
We can detect adversarial examples in Neural Nets by
leveraging topological information from under-optimized edges.
Detecting by Dissecting: Using Persistent Homology to catch Adversarial Examples in Deep Nets
Morgane Goibert, Thomas Ricatte, Elvis Dohmatob Criteo AI Lab

Introduction

•Adversarial examples: xadv = x + δ, ||δ|| ≤ ε, whose objective is to fool
Neural Nets, i.e h(xadv) 6= y .

•Different attack algorithms (FGSM, DeepFool, CW, etc.) or different
strenght (more or less subtle attacks).

•What to do against attacks: defend or detect. Defend tries to give the
correct label to an adversarial input. Detect tries to flag adversarial inputs
(and afterwards, human in the loop).

•No complete understanding of the phenomenon

Contributions
Main Takeaways

•Two detection methods: Raw Graph and Persistence Diagram, based on
topological information, better than baselines.

•Under-optimized edges are a major flaw for Neural Nets’ robustness.
Removing them by pruning helps better robustness.

•Unified protocol for evaluating adversarial examples detectors.

Methods
Thresholded induced graph. Information from both a trained Neural
Net and an input.

•Trained Neural Net g has parametersWl for layer l ∈ {1, .., L}.
•For input x , activation value g(x)l is the activation value of layer l .
• Induced graph for NN g and input x : G(g, x) = G(V, E), V = {1, ..., n1 +

...+ nL}, E = {u l, v l+1, w l
u,v ⊆ V 2 × R} where w l

u,v = [g(x)l]u × (Wl)u,v .
•Thresholded induced graph Gq(g, x): we keep an edge (u, v) iff |(W init

l)u,v−
(Wl)u,v | < ql , with ql threshold for layer l ("Magnitude Increase" method).
Reducting parameter space dimension: q1 = ... = qL = q or 0.

RawGraph. Simply use theweights ofGq(g, x) as features, so the feature
mapping is ΦRG(x, g) = Vec(W).
Use classical RBF kernel KRG(x, x ′) = exp

(
− 1

2σ2||ΦRG(x, g)−ΦRG(x ′, g)||2
)
.

Persistence Diagram. The representation of topological information,
in a weighted graph, through time.

Use the zeroth-dimensional persistence diagram of G̃q(x, g) = (V,−|W |)
where Gq(x, g) = (V,W) as features, so the feature mapping is ΦPD(x, g) :=

PD(G̃q(x, g)). We use the Sliced-Wasserstein Kernel: KPD(x, x ′) =

exp
(
− 1

2σ2SW(ΦPD(x, g),ΦPD(x ′, g))
)
.

Detection Results

•Unsupervised experiments: better for generalizing to any attacks.
•Better or competitive with baselines.
• Illustration: AUC results on MNIST LeNet (unsupervised).

Under-optimized edges
When we threshold using under-optimized edges (red), we get better results
than when we select the same number of random edges (blue, 90th
percentile and purple, 10th percentile).

MNIST
0.4

0.6

0.8

1.0

A
U

C

FashionMNIST SVHN CIFAR10

Underoptimized
Random (90th perc. of runs)
Random (10th perc. of runs)

Removing under-optimized edges⇔ Pruning (relevant ratio)⇒ robustness.

