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Introduction

o Adversarial examples: x?9" = x + ¢, ||0|| < &, whose objective is to fool

Neural Nets, i.e h(x29") # y.
« Different attack algorithms (FGSM, DeepFool, CW, etc.)
strenght (more or less subtle attacks).
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e« What to do against attacks: defend or detect. Defend tries to give the
correct label to an adversarial input. Detect tries to flag adversarial inputs

(and afterwards, human in the loop).

e No complete understanding of the phenomenon

Contributions

e Two detection methods: Raw Graph and Persistence Diagram, based on

topological information, better than baselines.

e Under-optimized edges are a major flaw for Neural Nets’ robustness.
Removing them by pruning helps better robustness.

e Unified protocol for evaluating adversarial examples detectors.
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Methods
Thresholded induced graph.

Net and an input.
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e lrained Neural Net g has parameters W, for layer | € {1, .., L}.

Induced graph
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o For input x, activation value g(x), is the activation value of layer /.

e Induced graph for NN g and input x: G(g,x) = G(V,E),V = {1,...,n +
Ak E={d vt wl, C V2 x R} where w), |, = [g(x)/]u X (W),

o Thresholded induced graph G9(g, x): we keep an edge (u, v) iff [(W/™), , —
(W) u vl < g, with g, threshold for layer / ("Magnitude Increase" method).

Reducting parameter space dimension: g; = ... = g, = g or 0.

Raw Graph. Simply use the weights of G9(g, x) as features, so the feature
mapping is Prg(x, g) = Vec(W).
Use classical RBF kernel Krg(x, x') = exp (—

5| |[Pra(x, ) — Pra(X’, 9)|]?).

Persistence Diagram. The representation of topological information,

in a weighted graph, through time.
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(V. =IW])
(V. W) as features, so the feature mapping is ®pp(x, g) =
KPD(X, X/) =

Use the zeroth-dimensional persistence diagram of G9(x, g) =
where G9(x, g) =
PD(GYx, g)). We use the Sliced-Wasserstein Kernel:

exp (—52SW(Ppp(x, g), Ppp(X, 9))).

Detecting by Dissecting: Using Persistent Homology to catch Adversarial Examples in Deep Nets
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Detection Results

e Unsupervised experiments: better for generalizing to any attacks.
e Better or competitive with baselines.
o lllustration: AUC results on MNIST LeNet (unsupervised).
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Under-optimized edges
When we threshold using under-optimized edges (red), we get better results

than when we select the same number of random edges (blue, 90th

percentile and purple, 10th percentile).
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Removing under-optimized edges < Pruning (relevant ratio) = robustness.

Pruned models against FGSM
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