We can detect adversarial examples in Neural Nets by leveraging topological information from under-optimized edges.

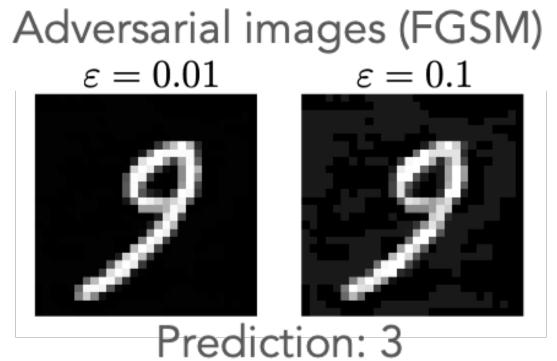
Detecting by Dissecting: Using Persistent Homology to catch Adversarial Examples in Deep Nets

Morgane Goibert, Thomas Ricatte, Elvis Dohmatob

Introduction

- Adversarial examples: $x^{adv} = x + \delta$, $||\delta|| \leq \varepsilon$, whose objective is to fool Neural Nets, i.e $h(x^{adv}) \neq y$.
- Different attack algorithms (FGSM, DeepFool, CW, etc.) or different strenght (more or less subtle attacks).

Clean image



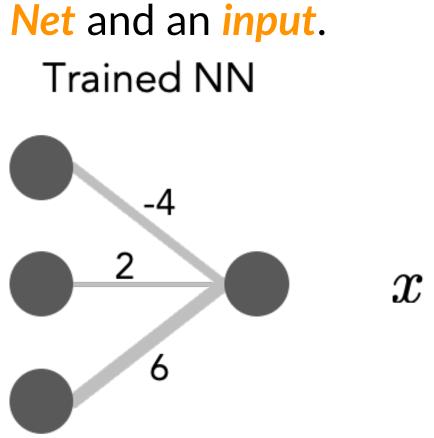
- What to do against attacks: defend or detect. Defend tries to give the correct label to an adversarial input. Detect tries to flag adversarial inputs (and afterwards, human in the loop).
- No complete understanding of the phenomenon

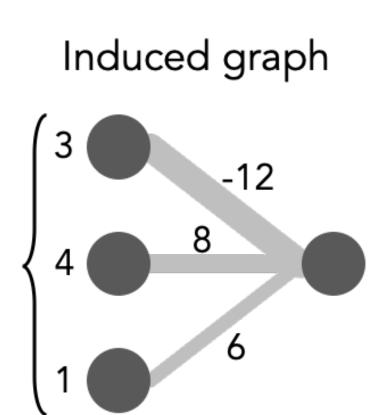
Contributions

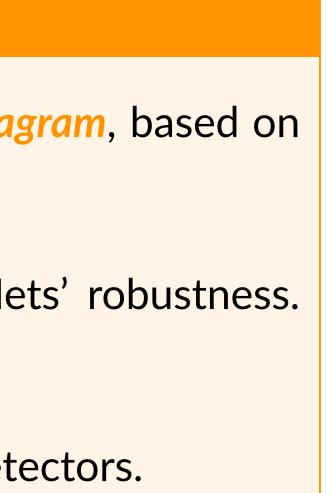
Main Takeaways

- Two detection methods: Raw Graph and Persistence Diagram, based on topological information, better than baselines.
- Under-optimized edges are a major flaw for Neural Nets' robustness. Removing them by pruning helps better robustness.
- Unified protocol for evaluating adversarial examples detectors.

Methods **Thresholded induced graph.** *Information* from both a *trained Neural*



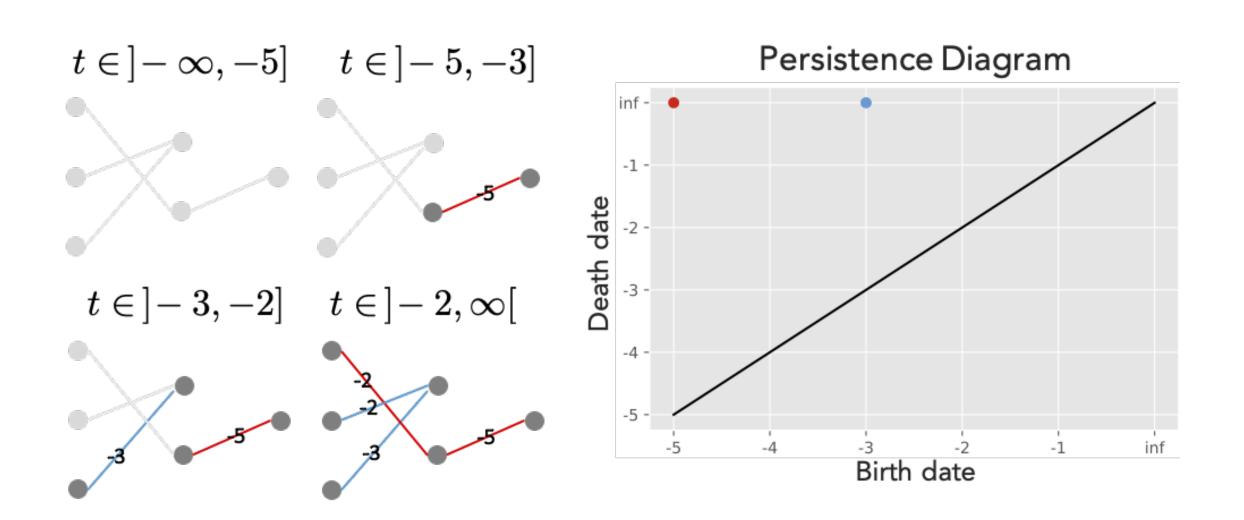




- ... + n_L }, $E = \{u', v'^{+1}, w'_{u,v} \subseteq V^2 \times \mathbb{R}\}$ where $w'_{u,v} = [g(x)_I]_u \times (W_I)_{u,v}$. $(W_l)_{u,v} < q_l$, with q_l threshold for layer l ("Magnitude Increase" method). **Reducting parameter space dimension:** $q_1 = \ldots = q_L = q$ or 0.
- Trained Neural Net g has parameters W_l for layer $l \in \{1, ..., L\}$. • For input x, activation value $g(x)_i$ is the activation value of layer *i*. • Induced graph for NN g and input x: $G(g, x) = G(V, E), V = \{1, ..., n_1 + \}$ • Thresholded induced graph $G^q(g, x)$: we keep an edge (u, v) iff $|(W_l^{(n)t})_{u,v} - v|$

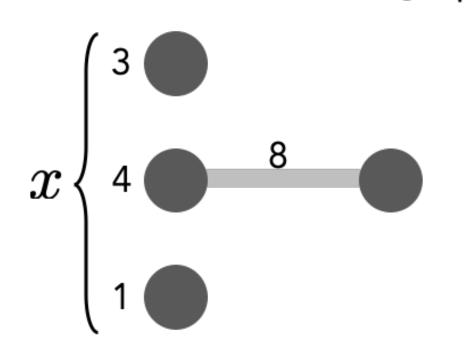
Raw Graph. Simply use the weights of $G^q(g, x)$ as features, so the feature mapping is $\Phi_{RG}(x, g) = Vec(W)$. Use classical RBF kernel $K_{RG}(x, x') = \exp\left(-\frac{1}{2\sigma^2}||\Phi_{RG}(x, g) - \Phi_{RG}(x', g)||^2\right)$.

The representation of topological information, Persistence Diagram. in a weighted graph, through time.



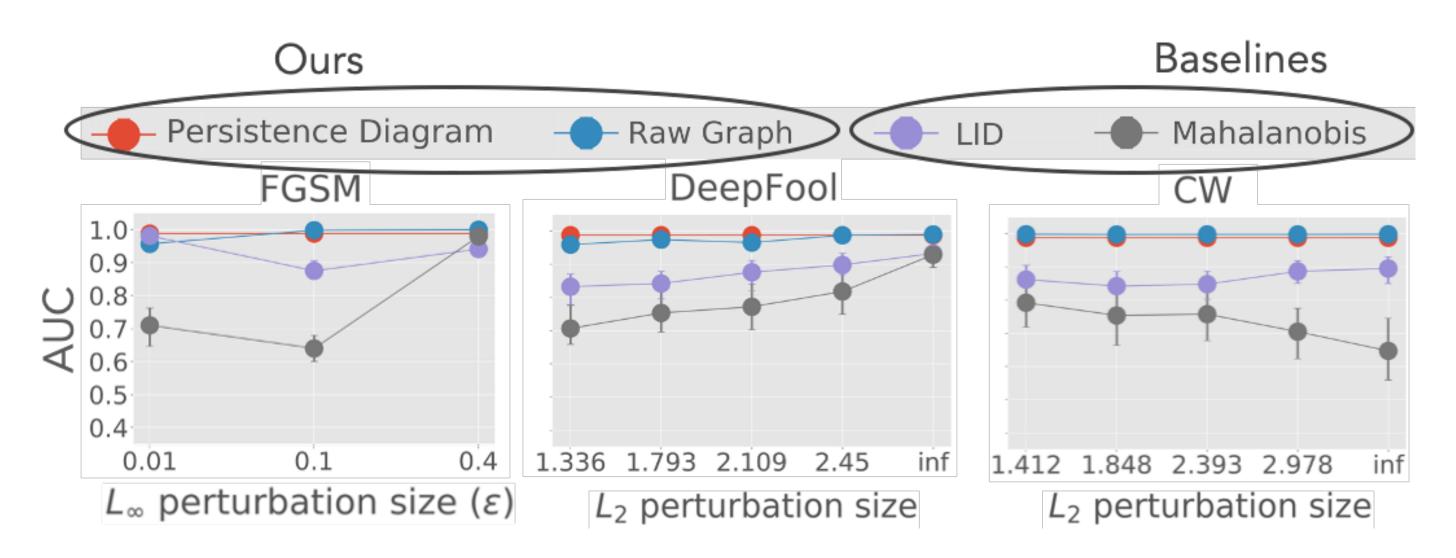
Use the zeroth-dimensional persistence diagram of $\tilde{G}^q(x, q) = (V, -|W|)$ where $G^q(x, g) = (V, W)$ as features, so the feature mapping is $\Phi_{PD}(x, g) :=$ $PD(\tilde{G}^q(x,g))$. We use the Sliced-Wasserstein Kernel: $K_{PD}(x,x') =$ $\exp\left(-\frac{1}{2\sigma^2}\mathbf{SW}(\Phi_{\mathsf{PD}}(x,g),\Phi_{\mathsf{PD}}(x',g))\right).$

Thresholded induced graph



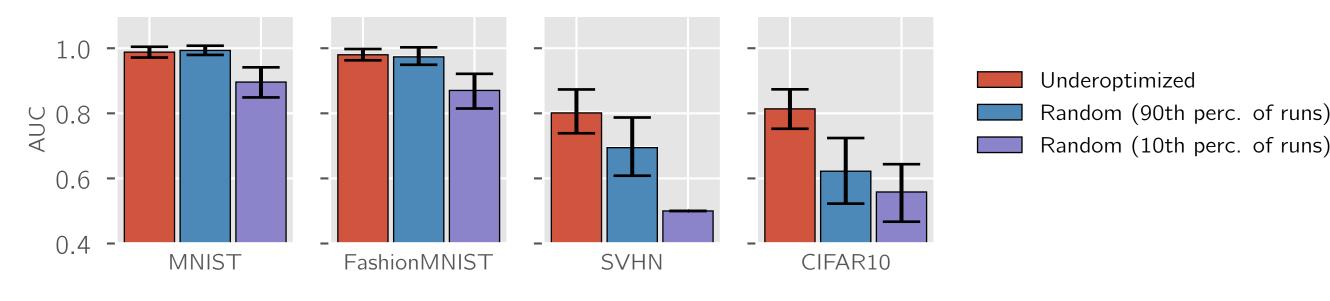
Detection Results

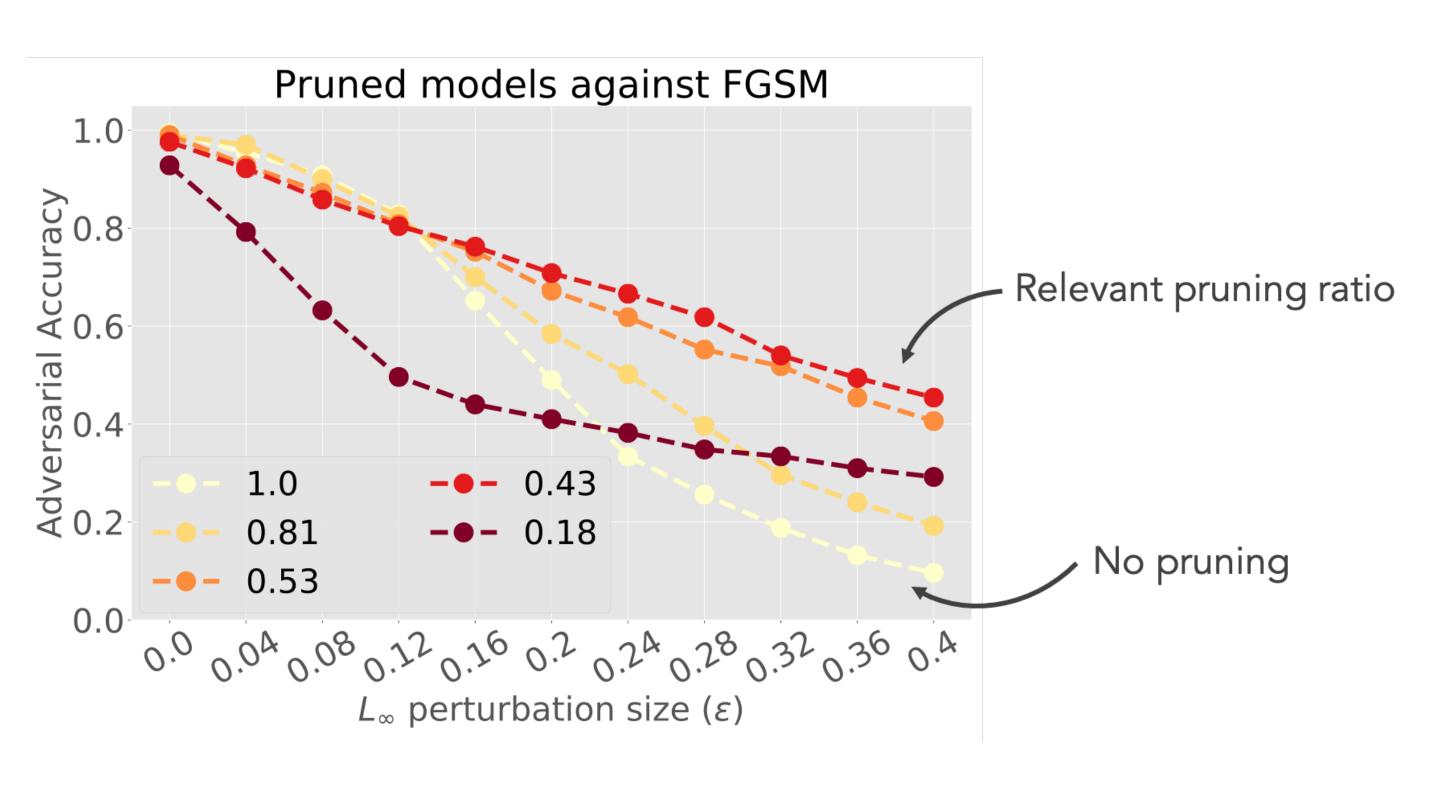
- Better or competitive with baselines.
- Illustration: AUC results on MNIST LeNet (unsupervised).



Under-optimized edges

When we threshold using under-optimized edges (red), we get better results than when we select the same number of random edges (blue, 90th percentile and purple, 10th percentile).





Criteo Al Lab

• Unsupervised experiments: better for generalizing to any attacks.

Removing under-optimized edges \Leftrightarrow Pruning (relevant ratio) \Rightarrow *robustness*.