We can **detect adversarial examples** in Neural Nets by leveraging **topological** information from **under-optimized edges**.

Detecting by Dissecting: Using Persistent Homology to catch Adversarial Examples in Deep Nets

Morgane Goibert, Thomas Ricatte, Elvis Dohmatob Criteo AI Lab

- Adversarial examples: $x^{adv} = x + \delta$, $||\delta|| \leq \varepsilon$, whose objective is to fool Neural Nets, i.e $h(x^{adv}) \neq y$.
- Different attack algorithms (FGSM, DeepFool, CW, etc.) or different strenght (more or less subtle attacks).

Clean image

Prediction: 3

Introduction

- •What to do against attacks: defend or detect. Defend tries to give the correct label to an adversarial input. Detect tries to flag adversarial inputs (and afterwards, human in the loop).
- No complete understanding of the phenomenon

Contributions

Main Takeaways

- Two *detection methods*: Raw Graph and *Persistence Diagram*, based on topological information, better than baselines.
- •*Under-optimized edges* are a major flaw for Neural Nets' robustness. Removing them by pruning helps better robustness.
- Unified protocol for evaluating adversarial examples detectors.

Methods

- **Trained Neural Net** g has parameters W_i for layer $i \in \{1, ..., L\}$. • For input x , *activation value* $g(x)$, is the activation value of layer *l*. • *Induced graph* for NN g and input x: $G(g, x) = G(V, E)$, $V = \{1, ..., n_1 +$... + n_L }, $E = \{u', v'^{+1}, w'_{u,v} \subseteq V^2 \times \mathbb{R}\}$ where $w'_{u,v} = [g(x)]_u \times (W_l)_{u,v}$. • Thresholded induced graph $G^q(g, x)$: we keep an edge (u, v) iff $|(W_i^{init})_{u, v} (W_U|_{U,V}| < q_U$, with q_U threshold for layer / ("Magnitude Increase" method). *Reducting parameter space dimension:* $q_1 = \ldots = q_L = q$ or 0.
-
-

Raw Graph. Simply use the *weights* of $G^q(g, x)$ as *features*, so the feature mapping is $\Phi_{RG}(x, g) = \text{Vec}(W)$. Use classical RBF kernel $K_{RG}(x, x') = \exp(-\frac{1}{2\sigma^2} || \Phi_{RG}(x, g) - \Phi_{RG}(x', g) ||^2).$

Persistence Diagram. The representation of topological information, in a weighted graph, through time.

Use the zeroth-dimensional *persistence diagram* of $\tilde{G}^q(x, g) = (V, -|W|)$ where $G^q(x, g) = (V, W)$ as *features*, so the feature mapping is $\Phi_{PD}(x, g) :=$ $PD(\tilde{G}^q(x,g))$. We use the **Sliced-Wasserstein Kernel:** $K_{PD}(x, x') =$ $\exp\left(-\frac{1}{2\sigma^2}$ SW $(\Phi_{\mathsf{PD}}(x,g),\Phi_{\mathsf{PD}}(x',g))\right)$.

Thresholded induced graph

Detection Results

•*Unsupervised experiments*: better for generalizing to any attacks.

-
- •Better or competitive with baselines.
- Illustration: AUC results on MNIST LeNet (unsupervised).

Under-optimized edges

When we threshold *using under-optimized edges* (red), we get *better results* than when we select the same number of *random edges* (blue, 90th percentile and purple, 10th percentile).

Underoptimized

Random (90th perc. of runs)

Removing under-optimized edges ⇔ Pruning (relevant ratio) ⇒ *robustness*.