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Foreword

These lecture notes were translated from the Finnish leciotes for the TUT course on graph
theory. The laborious bulk translation was taken care ofieystudents Janne Tamminen (TUT)
and Kung-Chung Lee (visiting from the University of Briti€iolumbia). Most of the material
was then checked by professor Robert Piché. | want to thartkdhslation team for their effort.

The notes form the base text for the course "MAT-62756 Grapblofy”. They contain
an introduction to basic concepts and results in graph yhedgth a special emphasis put on
the network-theoretic circuit-cut dualism. In many ways adel was the elegant and careful
presentation of ®AMY & T HULASIRAMAN, especially the older (and better) edition. There are
of course many modern text-books with similar contents, g popular ®0SS& Y ELLEN.

One of the usages of graph theory is to give a unified formaf@nmany very different-
looking problems. It then suffices to present algorithmshis tommon formalism. This has
lead to the birth of a special class of algorithms, the stedaraph algorithms. Half of the
text of these notes deals with graph algorithms, againm#imphasis on network-theoretic
methods. Only basic algorithms, applicable to problems ofienate size, are treated here.
Special classes of algorithms, such as those dealing wétsspgarge graphs, "small-world”
graphs, or parallel algorithms will not be treated. In thalg@rithms, data structure issues have
a large role, too (see e.gK&NA).

The basis of graph theory is in combinatorics, and the rolgaphics” is only in visual-
izing things. Graph-theoretic applications and modelsallginvolve connections to the "real
world” on the one hand—often expressed in vivid graphicahte—and the definitional and
computational methods given by the mathematical combiitadémd linear-algebraic machin-
ery on the other. For many, this interplay is what makes gthpbry so interesting. There is
a part of graph theory which actually deals with graphicaldng and presentation of graphs,
briefly touched in Chapter 6, where also simple algorithnesgiwen for planarity testing and
drawing. The presentation of the matter is quite superfieimhore profound treatment would
require some rather deep results in topology and curve yh€apter 7 contains a brief intro-
duction to matroids, a nice generalization and substitutgfaphs in many ways.

Proofs of graph-theoretic results and methods are usuatlgiven in a completely rigorous
combinatoric form, but rather using the possibilities afualization given by graphical presen-
tations of graphs. This can lead to situations where thesraady not be completely convinced
of the validity of proofs and derivations. One of the goals.@burse in graph theory must then



be to provide the student with the correct "touch” to suchhsegly loose methods of proof.
This is indeed necessary, as a completely rigoristic maditieal presentation is often almost
unreadable, whereas an excessively slack and lacunanpagea is of course useless.

Keijo Ruohonen



Chapter 1

Definitions and Fundamental Concepts

1.1 Definitions

Conceptuallyagraphis formed byverticesandedgesconnecting the vertices.

Example.

Formally, a graph is a pair of setd’, E), whereV is theset of verticeand £ is the set of
edgesformed by pairs of vertices is amultiset in other words, its elements can occur more
than once so that every element hasuw@tiplicity. Often, we label the vertices with letters (for
examplea,b,c,... orvy,vo,...)0ornumberd, 2, ... Throughout this lecture material, we will
label the elements df in this way.

Example. (Continuing from the previous example) We label the vestaefollows:

V1
V2 .V3 V4
We havd/ = {Ul, R ,115} for the vertices andr = {(Ul, 1)2), (1)2, 1)5), (U5, U5), (U5, U4), (U5, 114)}

for the edges.

Similarly, we often label the edges with letters (for exaenpl, b,c,... Oreq,es,...) Or num-
bersl, 2, ... for simplicity.



CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 2

Remark. The two edgegu, v) and(v, u) are the same. In other words, the pair is motlered

Example. (Continuing from the previous example) We label the edgésliasvs:

SoFE = {ey,...,e5}.
We have the following terminologies:
1. The two vertices, andv areend vertice®f the edg€u, v).
2. Edges that have the same end verticeparallel.
An edge of the forngv, v) is aloop.
A graph issimpleif it has no parallel edges or loops.
A graph with no edges (i.€ is empty) isempty
A graph with no vertices (i.8/ and E are empty) is aull graph
A graph with only one vertex isivial .

Edges aradjacentf they share a common end vertex.

© © N o 0 &~ W

Two vertices: andv areadjacentf they are connected by an edge, in other wotdsy)
is an edge.

10. Thedegreeof the vertex, written asd(v), is the number of edges withas an end vertex.
By convention, we count a loop twice and parallel edges dmuttr separately.

11. Apendant verteis a vertex whose degreelis
12. An edge that has a pendant vertex as an end vertgxasagant edge
13. Anisolated vertexs a vertex whose degree(is

Example. (Continuing from the previous example)

e v, anduvs are end vertices of;.

ey andes are parallel.

es is a loop.

The graph is not simple.

e1 ande, are adjacent.
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e v; andwv, are adjacent.

e The degree of; is 1 so it is a pendant vertex.

e1 IS a pendant edge.

e The degree of; is 5.

e The degree of, is 2.

e The degree ofi; is 0 so it is an isolated vertex.

In the future, we will label graphs with letters, for example
G=(V,E).

Theminimum degreef the vertices in a grapfi is denoted (&) (= 0 if there is an isolated
vertex inG). Similarly, we writeA(G) as themaximum degreef vertices inG.

Example. (Continuing from the previous examplg)7) = 0 and A(G) = 5.
Remark. In this course, we only considénite graphs, i.e) and £ are finite sets.
Since every edge has two end vertices, we get

Theorem 1.1.The graphG = (V, E), whereV = {vy,...,v,} andE = {ey, ..., e, }, satisfies

Z d(v;) = 2m.

Corollary. Every graph has an even number of vertices of odd degree.

Proof. If the verticesvy, ..., v, have odd degrees and the vertiegs,, . . ., v, have even de-
grees, then (Theorem 1.1)

d(vy) + -+ d(vg) =2m — d(vgyr) — -+ — d(vy)
is even. Therefore; is even. O

Example. (Continuing from the previous example) Now the sum of theedegsl + 2 + 0 +
2+ 5 =10=2-5. There are two vertices of odd degree, nameglgndvs.

A simple graph that contains every possible edge betweémealertices is called@omplete
graph A complete graph with vertices is denoted as,,. The first four complete graphs are
given as examples:

K K
K1 K2 A ! @
[ ) o——0

The graphiz; = (V4, F1) is asubgraphof Gy = (V4, Es) if
1. V; C Vs and

2. Every edge of7, is also an edge afs.
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Example. We have the graph

and some of its subgraphs are

Vo
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and

Thesubgraph of = (V, E) induced by the edge sé} C F is:
G = (Vi, E1) =det. (EN),
whereV; consists of every end vertex of the edge#in

Example. (Continuing from above) From the original gragh, the edges,, e3 ande; induce
the subgraph

Thesubgraph of7 = (V, E) induced by the vertex sét C V is:
G = (V1, E1) =det. (V1),
whereF; consists of every edge between the verticelg; in

Example. (Continuing from the previous example) From the originaghn G, the vertices,
v3 andwvs induce the subgraph

A complete subgraph df is called acliqueof G.



CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 6

1.2 Walks, Trails, Paths, Circuits, Connectivity, Componats

Remark. There are many different variations of the following terotogies. We will adhere to
the definitions given here.

A walkin the graphz = (V, E) is a finite sequence of the form
vio,ejl,vil,ep, ey ejk,,vik,

which consists of alternating vertices and edge§ ol he walk starts at a vertex. Vertices ,
andv;, are end vertices of;, (¢t = 1,...,k). v;, is theinitial vertexandv;, is theterminal
vertex k is thelengthof the walk. A zero length walk is just a single vertex. It is allowed to
visit a vertex or go through an edge more than once. A watlpenif v;, # v;, . Otherwise it
is closed

Example. In the graph

the walk

Vg, €7, Us, €8, U1, €8, Us, €6, U4, €5, V4, €5, V4

is open. On the other hand, the walk
Vg4, €5, U4, €3, V3, €2, U2, €7, U5, €6, U4
is closed.

A walk is atrail if any edge is traversed at most once. Then, the number oftiha the
vertex pairu, v can appear as consecutive vertices in a trail is at most theauof parallel
edges connecting andv.

Example. (Continuing from the previous example) The walk in the graph
U1, €8, Us, €9, U1, €1, V2, €7, Us, €6, U4, €5, V4, €4, Uy
is a trail.

A trail is apathif any vertex is visited at most once except possibly theah#nd terminal
vertices when they are the same. A closed pathdscait. For simplicity, we will assume in
the future that a circuit is not empty, i.e. its lengthl. We identify the paths and circuits with
the subgraphs induced by their edges.
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Example. (Continuing from the previous example) The walk
V2, €7, Us, €6, U4, €3, U3

is a path and the walk
Uy, €7, U5, €6, U4, €3, U3, €2, U2
iS a circuit.

The walk starting at: and ending at is called anu— walk « andv areconnectedf there
is au—v walk in the graph (then there is alsaaw path!). If u andv are connected andandw
are connected, thenandw are also connected, i.e. if there is-a walk and av—w walk, then
there is also a—w walk. A graph isconnectedf all the vertices are connected to each other.
(A trivial graph is connected by convention.)

Example. The graph

IS not connected.
The subgrapld’; (not a null graph) of the grapfy is acomponenbof G if
1. GG, is connected and

2. Either G, is trivial (one single isolated vertex @f) or (G, is not trivial andG, is the
subgraph induced by those edgeg-athat have one end vertex (#;.

Different components of the same graph do not have any convextices because of the fol-
lowing theorem.

Theorem 1.2.1f the graphG has a vertex that is connected to a vertex of the compor@nt
of G, thenw is also a vertex of;.
Proof. If v is connected to vertex of G, then there is a walk i67

/

UV = Vig; €51y Uiy e ooy Ujy_q5 €5, V4, = U .

Sincev’ is a vertex ofG, then (condition #2 above), is an edge ofy; andv;, , is a vertex
of GG;. We continue this process and see thet a vertex ofz;. O

Example.

The components @f are GG, G5, G5 andGy.
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Theorem 1.3. Every vertex ofs belongs to exactly one componentafSimilarly, every edge
of GG belongs to exactly one componentaf

Proof. We choose a vertexin GG. We do the following as many times as possible starting with
Vi ={v}:

(x) If o' is a vertex ofG such that’ ¢ V; andv’ is connected to some vertex f, then
Vi< Viu{v'}.

Since there is a finite number of verticesinthe process stops eventually. The l&sinduces a
subgraphz; of G that is the component @f containingu. GG; is connected because its vertices
are connected to so they are also connected to each other. Condition #2 heltsise we can
not repeatx). By Theorem 1.2y does not belong to any other component.

The edges of the graph are incident to the end vertices ofcimpaonents. 0J

Theorem 1.3 divides a graph into distinct components. Thefpof the theorem gives an
algorithm to do that. We have to repeat what we did in the pamfong as we have free
vertices that do not belong to any component. Every isola¢etdx forms its own component.
A connected graph has only one component, namely, itself.

A graphG with n vertices,n edges and components has thank

p(G)=n—k.

Thenullity of the graph is
w(G)=m—n+k.

We see thap(G) > 0 andp(G) + p(G) = m. In addition,u(G) > 0 because
Theorem 1.4.p(G) <m

Proof. We will use the second principle of induction (strong indaoicj for m.

Induction Basism = 0. The components are trivial and= k.

Induction HypothesisThe theorem is true fon < p. (p > 1)

Induction StatemeniThe theorem is true fatn = p.

Induction Statement ProofVe choose a compone@t, of G which has at least one edge.
We label that edge and the end vertices andv. We also label7; as the subgraph @ and
G, obtained by removing the edgdrom G, (but not the vertices andv). We labelG’ as the
graph obtained by removing the edgé&om G (but not the vertices andv) and letk’ be the
number of components ¢f’. We have two cases:

1. G4 is connected. Thert/ = k. We use the Induction Hypothesis 6t
n—k=n—kK=pG)<m-1<m.
2. G is not connected. Then there is only one path betweandv:
U, e,V

and no other path. Thus, there are two componentsiandk’ = k£ + 1. We use the
Induction Hypothesis ot’:

p(GY=n—-kK=n—-k—1<m-1
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Hencen — k < m. U
These kind of combinatorial results have many consequefRoeexample:

Theorem 1.5.1f G is a connected graph and > 2 is the maximum path length, then any two
paths inG with length% share at least one common vertex.

Proof. We only consider the case where the paths are not circuitee(@ases can be proven in
a similar way.). Consider two paths 6fwith length#:

Vigs €515 Vigy €jgy - - -5 €55 Uiy, (pathpl)

and

Uit s €515 Uy

Iz ejéa R ejlga Uigﬁ (pathPQ)

Let us consider the counter hypothesihe pathsp; andp, do not share a common vertex.
Since( is connected, there exists ap—v;; path. We then find the last vertex on this path
which is also orp, (at least;, is onp;) and we label that vertex,. We find the first vertex of
thewv;,—v;; path which is also op, (at leastv;; is onp,) and we label that vertex, . So we get

av;,—v; path

Vi s 6]‘1/, e ejé/, Vit .
The situation is as follows:
Vigy €415 Vigy -+ +5Viys €jppgy - o5 €y Uiy,
eji/
ejé/
U%,@ji,via, Ce ,Uz‘g,ej;_H, .. '7€j;;7vi;€

From here we get two paths;,—v;; path and; —v;, path. The two cases are:
e ¢ > s: Now the length of the;—v;;, pathis>k+ 1. /*

e t < s: Now the length of the; —v;, pathis> £ + 1. v 0

A graph iscircuitlessif it does not have any circuit in it.

Theorem 1.6. A graph is circuitless exactly when there are no loops andetieat most one
path between any two given vertices.

Proof. First let us assumé&' is circuitless. Then, there are no loopsGn Let us assume the
counter hypothesisThere are two different paths between distinct verticesidv in G

U = Vg, €j,, Vi, €y - - - €5, Vi, = U (Pathpy)

and
U = Ui67 ejia Uilla ejéa R 6]’27 Uiz =v (pathPQ)

(here we have, = i, andi;, = 7;), wherek > ¢. We choose the smallest indesuch that
Vi, # Vi

There is such abecause otherwise

'From now on, the symbal/ means contradiction. If we get a contradiction by procegfliom the assump-
tions, the hypothesis must be wrong.
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1. k> tandv;, =v =wv; =v;, (/) or

2. k=/(tandv;, = vy,...,v;, = Vi Then, there would be two parallel edges between two
consecutive vertices in the path. That would imply the exiseé of a circuit between two
vertices inG. 4/

We choose the smallest indesuch that > ¢ andv;, is in the pattp, (at least;, is inps). We

choose an index such that > ¢ andv;, = v,, (it exists becausg, is a path). Then,
Vig_15C€jgy -5 €y ’UZ‘S(: ’Uilr), €j;, ey ejt/, ,Uié,l(: Ul't—l)

is a circuit. 4/ (Verify the case = s = r.)

Let us prove the reverse implication. If the graph does ne¢ laay loops and no two distinct
vertices have two different paths between them, then tisame tircuit. For example, if

vio,ejl,vil,eﬁ, .. '7€jk7vik = Vs

is a circuit, then eithek = 1 ande;, is aloop /), or k > 2 and the two vertices,, andv;,
are connected by two distinct paths

Vigs €415 Viy and Uity €joy « - + 5 €y Vi, = Uy (\/) [l

1.3 Graph Operations

The complemenbf the simple grapit; = (V, E) is the simple grapli: = (V, E), where the
edges inF are exactly the edges not i

Example.

Vo V3
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Example. The complement of the complete graphis the empty graph with vertices.

Obviously,i = G. If the graphsz = (V, E) andG’ = (V’, E’) are simple and” C V/, then
the differencegraph isG — G’ = (V, E”), whereE” contains those edges frofthat are not
in G’ (simple graph).

Example.
)

Here are some binary operations between two simple gréphs- (Vi, E;) and Gy, =
(‘/27 E2)

e Theunionis G, U Gy = (V1 U Vs, By U Ey) (simple graph).
e Theintersections G; N Gy = (V1 N Vs, By N Ey) (simple graph).

e Thering sumG; @ G, is the subgraph af'; UG, induced by the edge sét @ Fs (simple
graph).Note! The set operatiom is thesymmetric difference.e.

E\® Ey = (Ey — Ey) U (B, — Ey).

Since the ring sum is a subgraph induced by an edge set, tieene &olated vertices. All three
operations are commutative and associative.

Example. For the graphs

Vi Vo Vi
& oV
Gy s G,
€
V Vv V
3 e, 4 3
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we have
Vi

&
G:LD Gz: \ 65
Ny oV,
€ \

Ve

Vo
oV

Vv
1 vy

&
GinGy |8 G, 0 G,: e
€;

Ve

Vo

V3

Remark. The operationsJ), N and @ can also be defined for more general graphs other than
simple graphs. Naturally, we have to "keep track” of the nmlicity of the edges:

U : The multiplicity of an edge itr; U G, is the larger of its multiplicities irz; and Gs.
N : The multiplicity of an edge i/; N G4 is the smaller of its multiplicities iG/; and Gs.

@ : The multiplicity of an edge itr; & G is |m; — my|, wherem, is its multiplicity in G,

andms is its multiplicity inGs.

(We assume zero multiplicity for the absence of an edge {lditian, we can generalize the dif-
ference operation for all kinds of graphs if we take accourihe multiplicity. The multiplicity
of the edge: in the differences — G’ is

: — mea, if my > ,
mp — mg = ml_ 2, T = e (also known as thproper differenck
0, if m1 < Mo
wherem; andm, are the multiplicities ot in G; andGs, respectively.

If vis a vertex of the grapty = (V, E), thenGG — v is the subgraph off induced by the
vertex set” — {v}. We call this operation theemoval of a vertex

Example. (Continuing from the previous example)

oVy
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Similarly, if e is an edge of the grap& = (V, E), thenG — e is graph(V, E’), whereE' is
obtained by removing from E. This operation is known agmoval of an edgeWe remark
that we are not talking about removing an edge as in Set Thbeoause the edge can have
nonunit multiplicity and we only remove the edge once.

Example. (Continuing from the previous example)

Vi Vo
& oV
G, —ex 3
1~ 65
V. A v
3 & 4

If w andv are two distinct vertices of the graggh = (V, E), then we carshort-circuitthe
two verticesu andv and obtain the grapti’’, E’), where

V' =(V —{u,v})U{w} (w ¢V isthe "new” vertex)
and

E' = (E—{(,u), (v, v) | v e V}HU{{, w)

w) | (v',u) € Eor(v',v) € E}
U {(w,w) | (u,

(u,u) € Eor(v,v) € E}

(Recall that the pair of vertices corresponding to an edgeisordered).Note! We have to
maintain the multiplicity of the edges. In particular, trdge (u, v) becomes a loop.

Example. (Continuing from the previous example) Short-cirayiandv, in the graphG:

Vi Vo
oV

In the graphGG = (V, F), contractingthe edge: = (u, v) (not a loop) means the operation in
which we first remove and then short-circuit andv. (Contracting a loop simply removes that
loop.)

Example. (Continuing from the previous example) We contract the egge G, by first re-
movinges and then short-circuiting, andwvs.
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Vi V2
& oV;
=3
V3 e4 V4
Vi
& oV
w A

Remark. If we restrict short-circuiting and contracting to simpleagphs, then we remove loops
and all but one of the parallel edges between end vertices fre results.

1.4 Cuts

A vertexv of a graphG is acut vertexor anarticulation vertexof G if the graphG — v consists
of a greater number of components ti@n

Example. v is a cut vertex of the graph below:

cut \(ertex

(Note! Generally, the only vertex of a trivial graph is not a cut egrtneither is an isolated
vertex.)

A graph isseparabléf it is not connected or if there exists at least one cut weitethe
graph. Otherwise, the graphnenseparable

Example. The graphG in the previous example is separable.

Example. The graph below is nonseparable.
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A blockof the graph(7 is a subgrapldr; of G (not a null graph) such that
e (71 is nonseparable, and

e if (G5 is any other subgraph @f, thenG, UGy = G or G; UG5 is separable (think about
that!).

Example. The graph below is separable:

cut vertex

Theorem 1.7. The vertexv is a cut vertex of the connected graghif and only if there exist
two verticesu andw in the graphG such that

() v +# u, v # wandu # w, but
(il) v is on everyu—w path.

Proof. First, let us consider the case thas a cut-vertex of7. Then,G — v is not connected
and there are at least two componefits= (V;, E;) andGy = (14, Ey). We choose: € 1}
andw € V,. Theu—w path is inG because it is connected.fis not on this path, then the path
is also iInG — v (y/). The same reasoning can be used for alkthe paths inG.

If vis in everyu—w path, then the verticesandw are not connected i§' — v. 0J
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Theorem 1.8. A nontrivial simple graph has at least two vertices which aoe cut vertices.

Proof. We will use induction for the grap&y with n vertices.

Induction Basis The case: = 2 is obviously true.

Induction HypothesisThe theorem is true fat < k. (k > 2)

Induction StatemenfThe theorem is true fat = £ + 1.

Induction Statement Prooff there are no cut vertices i@, then it is obvious. Otherwise,
we consider a cut vertex of G. LetGy,..., G, be the components @ — v (som > 2).
Every component; falls into one of the two cases:

1. G, is trivial so the only vertex of7; is a pendant vertex or an isolated vertexGobut it is
not a cut vertex of.

2. G; is not trivial. The Induction Hypothesis tells us that thexést two vertices: andw
in GG; which are not cut vertices @f;. If v andu (respectivelyy andw) are not adjacent
in G, thenu (respectivelyw) is not a cut vertex irtz. If both v andu as well asu andw
are adjacent id7, thenu andw can not be cut vertices @f. [

A cut setof the connected grapfi = (V, F) is an edge sef' C F such that
1. G — F (remove the edges df one by one) is not connected, and
2. G — H is connected whenevéf C F.
Theorem 1.9.1f F'is a cut set of the connected graphthenG — F' has two components.

Proof. Let ' = {ey,...,ex}. The graphG —{ey, ..., ex_1} is connected (and so(sif & = 1)
by condition #2. When we remove the edges from the connectgthgwe get at most two
components. 0]

Example. In the graph

Vs

{617 64}’ {667 67}’ {617 €2, 63}’ {68}’ {637 €4, €5, 66}’ {627 €5, 67}’ {627 €5, 66} and{627 €3, 64} are
cut sets. Are there other cut sets?

In a graphGG = (V, E), a pair of subset®; andV; of V' satisfying

is called acut (or apartition) of GG, denoted V7, V5). Usually, the cutgVy, Vs) and(V;, Vi) are
considered to be the same.
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Example. (Continuing from the previous examplg:, v, v3}, {vs, vs, v6}) iS @ cut.
We can also think of a cut as an edge set:

cut (14, V3) = {those edges with one end vertexiinand the other end vertex ir; }.

(Note! This edge set does not defilieandV; uniquely so we can not use this for the definition

of a cut.)
Using the previous definitions and concepts, we can easlygthe following:

1. The cut(V;, ;) of a connectedjraphG (considered as an edge set) is a cut set if and
only if the subgraphs induced by; and 1, are connected, i.&7 — (V7,V,) has two
components.

2. If F'is a cut set of the connectegtaphG andV; andV; are the vertex sets of the two
components off — F', then(V}, V,) is a cut andF’ = (13, 3).

3. Ifvis avertex of a connectddontrivial) graphG = (V, E), then({v},V — {v}) isa cut
of G. It follows that the cut is a cut set if the subgraph (& v) induced byl" — {v}
is connected, i.e. if is nota cut vertex.

If there exists a cutl, ;) for the graphG = (V, E) so thatt' = (4, V3), i.e. the cut
(considered as an edge set) includes every edge, then tited@ra bipartite.

Example. The graph

Vg
Vi

Vg
Vo

Ve
V3@

V7

is blpartlte Vi= {Ul, Vo, Ug} andV; = {U4, Vs, Vg, U7}.

A simple bipartite graph is called @@mplete bipartite graphf we can not possibly add any
more edges to the edge s&f, 15), i.e. the graph contains exactly all edges that have one end
vertex inV; and the other end vertex In. If there aren vertices inV; andm vertices inV,, we
denote it agy,, ,,, (cf. complete graph).
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Example.

(Usually K, ,, and K, ,, are considered to be the same.)

1.5 Labeled Graphs and Isomorphism

By alabeling of the verticesf the graphG = (V, E), we mean a mapping : V' — A, where
Ais called thdabelset. Similarly, dabeling of the edgeis a mapping’ : £ — B, whereB is
the label set. Often, these labels are numbers. Then, wiheatlweightsof vertices and edges.
In a weighted graph, the weight of a path is the sum of the wsighthe edges traversed.

The labeling of the vertices (respectively edgeshjsctiveif distinct vertices (respectively
edges) have distinct labels. An injective labelingigctiveif there are as many labels i
(respectively inB) as the number of vertices (respectively edges).

Example. If A= {0,1} andB = R, then in the graph,

1

the labeling of the edges (weights) is injective but not #ieeling of the vertices.

The two graphgr, = (V4, E;) andG, = (V4, E») areisomorphidif labeling the vertices of
G, bijectively with the elements df; givesG,. (Note! We have to maintain the multiplicity of
the edges.)
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Example. The graphs&, and GG, are isomorphic and the vertex labeling — v, and edge
labelinge; — ¢’ define the isomorphism.

Determining whether or not two graphs are isomorphic is d veskearchetiproblem. It
differs significantly from other problems in graph theorydametwork analysis. In addition,
it has a lot to do with group theory in algebra. The problemnipartant in the theory of
Computational Complexity. For example, refer tOBLER, J. & SCHONING, U. & TORAN,
J.: The Graph Isomorphism Problem. Its Structural CompleBigkhauser (1993).

2Maybe too well, cf. RAD, R.C. & CORNEIL, D.G.: The Graph Isomorphism Diseaseurnal of Graph
Theoryl (1977), 339-363.
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Trees

2.1 Trees and Forests

A forestis a circuitless graph. #&eeis a connected forest. subforests a subgraph of a forest.
A connected subgraph of a tree issabtree Generally speaking, a subforest (respectively
subtree) of a graph is its subgraph, which is also a forespéetively tree).

Example. Four trees which together form a forest:

T

A spanning treef a connectedraph is a subtree that includes all the vertices of thatrgrip
T is a spanning tree of the graph then

G-T —def. T

is thecospanning tree

G: D spanning tree: >

20

Example.
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cospanning tree )

The edges of a spanning tree are cabe@mhchesand the edges of the corresponding cospanning
tree are calledinks or chords

Theorem 2.1. If the graphG hasn vertices andn edges, then the following statements are
equivalent:

() Gisatree.
(i) There is exactly one path between any two vertic&s and G has no loops.
(i) Gisconnected anch = n — 1.
(iv) Giscircuitless andn =n — 1.
(v) Giscircuitless and if we add any new edge&ipthen we will get one and only one circuit.

Proof. (i)=-(ii): If G is a tree, then it is connected and circuitless. Thus, ther@aloops in
(. There exists a path between any two vertice&oBy Theorem 1.6, we know that there is
only one such path.

(i)=-(iii): G is connected. Let us use inductionon

Induction Basism = 0, G is trivial and the statement is obvious.

Induction Hypothesism = n — 1 whenm < /. (¢ > 0)

Induction Statementn = n — 1 whenm = ¢ + 1.

Induction Statement Proot et e be an edge iz. ThenG — e has/ edges. IfG — e is
connected, then there exist two different paths betweeretigevertices ot so (ii) is false.
Therefore G — e has two components; andG-. Let there bey, vertices andn, edges in;.
Similarly, let there beu, vertices andn, vertices inG,. Then,

n=n;+ns and m=m; +ms + 1.
The Induction Hypothesis states that
miy=n; —1 and Moy = Ng — 1,

som=n;+ny,—1=n-—1.
(iif) =(iv): Consider the counter hypothesiBhere is a circuit inG. Lete be some edge in
that circuit. Thus, there arevertices anch — 2 edges in the connected gragh-c. /!
(iv)=(v): If G is circuitless, then there is at most one path between anyéntaces (The-
orem 1.6). IfG has more than one component, then we will not get a circuitwte draw an
edge between two different components. By adding edgesaweannect components without
creating circuits:

In a connected graph with vertices, there are at least- 1 edges. (Theorem 1.4)
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1st component 2nd componeny 3rd 4th
componen componen

If we addk(> 1) edges, then (because=iii))
SoG is connected. When we add an edge between vertices that aadjaoent, we get only
one circuit. Otherwise, we can remove an edge from one tiscuihat other circuits will not
be affected and the graph stays connected, in contraditipi) =-(iv). Similarly, if we add a
parallel edge or a loop, we get exactly one circuit.

(v)=-(i): Consider the counter hypothes( is not a tree, i.e. it is not connected. When we
add edges as we did previously, we do not create any ciragiesfigure)./ O

m+k=n—1 (y/becausen =n—1).

Since spanning trees are trees, Theorem 2.1 is also trupdonig trees.
Theorem 2.2. A connected graph has at least one spanning tree.

Proof. Consider the connected graphwith n vertices andn edges. Ifm = n — 1, thenG
is a tree. Sincé&- is connectedyn > n — 1 (Theorem 1.4). We still have to consider the case
m > n, where there is a circuit ity. We remove an edgefrom that circuit. G — e is now
connected. We repeat until there are- 1 edges. Then, we are left with a tree. 0J

Remark. We can get a spanning tree of a connected graph by startimg &o arbitrary sub-
forest M (as we did previously). Since there is no circuit whose edgesll in M, we can
remove those edges from the circuit which are natin

By Theorem 2.1, the subgragh, of G with n vertices is a spanning tree 6f (thusG is
connected) if any three of the following four conditions ol

1. G, hasn vertices.
2. (G, is connected.

3. G1 hasn — 1 edges.
4. (7, is circuitless.

Actually, conditions #3 and #4 are enough to guarantee(thad a spanning tree. If conditions
#3 and #4 hold but7; is not connected, then the components/efare trees and the number of
edges in?; would be

number of vertices- number of components n — 1 (/).
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Theorem 2.3.1f a tree is not trivial, then there are at least two pendantices.

Proof. If a tree hasi(> 2) vertices, then the sum of the degree&(is — 1). If every vertex
has a degree 2, then the sum will be> 2n (/). On the other hand, if all but one vertex have
degree> 2, then the sum would be 1+ 2(n — 1) = 2n — 1 (y/). (This also follows from
Theorem 1.8 because a cut vertex of a tree is not a pendaak¥yert O

A forest withk components is sometimes called-&ree. (So al-tree is a tree.)

Example.

4-tree: Py PY P

We use Theorem 2.1 to see that a graph witomponents has spanningk-tree, also known
as aspanning forestwhich hask components.

2.2 (Fundamental) Circuits and (Fundamental) Cut Sets

If the branches of the spanning tréeof a connected grapy areby, ..., b, and the corre-
sponding links of the cospanning tréé arec, . . ., ¢,, .11, then there exists one and only one
circuit C; in T' + ¢; (which is the subgraph aff induced by the branches @f andc¢;) (The-
orem 2.1). We call this circuit &undamental circuit Every spanning tree defines — n + 1
fundamental circuit§’, . . ., C,,_,.1, Which together form &undamental set of circuit&Every
fundamental circuit has exactly one link which is not in arlges fundamental circuit in the
fundamental set of circuits. Therefore, we can not write famglamental circuit as a ring sum
of other fundamental circuits in the same set. In other wdtdsfundamental set of circuits is
linearly independent under the ring sum operation.

Example.
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> S P

The graphl’ — b; has two components, and7;. The corresponding vertex sets &fieand
V,. Then, (Vi V5) is a cut ofG. Itis also a cut set ofr if we treat it as an edge set because
G — (4, V3) has two components (result #1 p. 17). Thus, every brandf 7' has a corre-
sponding cut sef;. The cut setdy, ..., I, ; are also known aBindamental cut setnd they
form afundamental set of cut setSvery fundamental cut set includes exactly one branch of
and every branch df’ belongs to exactly one fundamental cut set. Thereforeyesmanning
tree defines a unique fundamental set of cut seté&for

Example. (Continuing from the previous example) The graph

&

has the spanning tree

that defines these fundamental cut sets:

by : {61762} by : {62763764} b : {62764765766}
by:{ez, e, 65,67} bs: {es}

Next, we consider some properties of circuits and cut sets:

(a) Every cut set of a connected graphncludes at least one branch from every spanning
tree of G. (Counter hypothesisSome cut sef’ of G does not include any branches of a
spanning tre€’. Then,T is a subgraph ofr — F andG — F'is connected,/ )

(b) Every circuit of a connected graghincludes at least one link from every cospanning tree
of G. (Counter hypothesisSome circuitC' of G does not include any link of a cospanning
treeT™. Then, T’ = G — T* has a circuit and’ is not a tree/)
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Theorem 2.4. The edge sek’ of the connected grap®i is a cut set of~ if and only if

(i) F includes at least one branch from every spanning tre@,aind

(i) if H C F,then there is a spanning tree none of whose brancheshsk in

Proof. Let us first consider the case wheras a cut set. Then, (i) is true (previous proposition
(@). If H C F thenG — H is connected and has a spanning ffeerhis T is also a spanning
tree of G. Hence, (ii) is true.

Let us next consider the case where both (i) and (ii) are ffbenG — F' is disconnected.
If H C F there is a spanning tréeé none of whose branches is ih. ThusT is a subgraph of
G — H andG — H is connected. Hencé is a cut set. O

Similarly:
Theorem 2.5. The subgrapit’ of the connected grapfi is a circuit if and only if

() C'includes at least one link from every cospanning tre€'gand

(i) if D is a subgraph of” and D # (', then there exists a cospanning tree none of whose
linksisinD.

Proof. Let us first consider the case wheteis a circuit. Then(' includes at least one link
from every cospanning tree (property (b) above) so (i) is.tifi D is a proper subgraph af,

it obviously does not contain circuits, i.e. it is a foreste \8an then supplement so that it is
a spanning tree af (see remark on p. 22), i.e. some spanning #esf GG includesD and D
does not include any link df*. Thus, (ii) is true.

Now we consider the case where (i) and (ii) are both true. Ttieme has to be at least one
circuit in C' because” is otherwise a forest and we can supplement it so that it isaarspg
tree of G (see remark on p. 22). We take a circ@ftin C. Since (ii) is true,C’ # C'is not
true, becausé” is a circuit and it includes a link from every cospanning tfgse property (b)
above). Thereforg, = C’ is a circuit. 0J

Theorem 2.6. A circuit and a cut set of a connected graph have an even nuofbeymmon
edges.

Proof. We choose a circuiC and a cut set’ of the connected grap&y. G — F' has two
componentsy; = (V4, E1) and Gy = (Va, Ey). If C'is a subgraph o7, or Go, then the
theorem is obvious because they have no common edges. Lesusia that” and F' have
common edges. We traverse around a circuit by starting a¢ semexv of G';. Since we come
back tov, there has to be an even number of edges of thelGuts) in C. O

The reader is advised to read the following several times:

Theorem 2.7. A fundamental circuit corresponding to linkof the cospanning treg&™ of a
connected graph is formed exactly by those branché&s whose corresponding fundamental
cut set includes.

Proof. There exists a fundamental circditthat corresponds to link of 7*. The other edges
by, ..., b, of C are branches df'. We denotd; as the fundamental cut set that corresponds to
branchb;. Then,b; is the only branch of” which is in bothC' and ;. On the other hand; is

the only link of 7% in C. By Theorem 2.6, we know that the common edge§’'@nd /; areb;
andc, in other wordsg is an edge of;. Then, we show that there is man the fundamental cut
setsly.1,..., I, 1 that correspond to the branchgs, ..., b, 1 of T. For instance, it were

in I.1, then the fundamental cut sét,; and the circuit”' would have exactly one common
edge. {/). Socis only in the fundamental cut sefs . . ., I;. O
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The following is the corresponding theorem for fundameatslsets:

Theorem 2.8. The fundamental cut set corresponding to brahdi the spanning tre& of a
connected graph consists exactly of those link6'oivhose corresponding fundamental circuit
includesb.

Proof. Let I be a fundamental cut set that corresponds to the brarafh7’. Other edges
c,...,c; Of I are links of 7. Let C; denote the fundamental circuit that corresponds; to
Then,¢; is the only link of 7% in both I andC;. On the other hand, is the only branch of " in
1. By Theorem 2.6, the common edges/dndC; areb andc;, in other words) is an edge of
C;. Then, we show that the fundamental circuits 1, . . ., C,,_,.1 corresponding to the links
Chil, - -+, Cm—_ns1 donotinclude. For example, ib were inCy., 1, then the fundamental circuit
Cr+1 and the cut sef would have exactly one common edgg §. Hence, the branchis only
in fundamental circuitg’, . . ., C. O

From the results, we can see the duality between cut setsiendts of a graph: The
theorems for cut sets can generally be converted to duatehmeofor circuits and vice versa.
Usually, we just need to change some of the key terminoldgiteeir duals in the theorems and
proofs. In particular, we take advantage of this dualisndfealing with matroids (see Chapter
7).
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Directed Graphs

3.1 Definition

Intuitively, a directed graphor digraphis formed by vertices connected biyrected edgesr

arcs?!

Example.

Formally, a digraph is a paifV, £), whereV is the vertex set andl' is the set of vertex pairs as
in "usual” graphs. The difference is that now the element® afre_orderegbairs: the arc from
vertexu to vertexwv is written as(u, v) and the other paifv, u) is the opposite direction arc. We
also have to keep track of the multiplicity of the arc (direotof a loop is irrelevant). We can
pretty much use the same notions and results for digraphs @oapter 1. However:

1.

Vertexu is theinitial vertexand vertex is theterminal verteof the arc(u, v). We also
say that the arc imcident outof « andincident intow.

Theout-degreeof the vertexv is the number of arcs out of it (denotdd (v)) and the
in-degreeof v is the number of arcs going into it (denotéd(v)).

In thedirected walk(trail, path or circuit),
Uio) 6]'1, Uila 6]'2, ey ejk,, Uik

v;, Is the initial vertex andy;,_, is the terminal vertex of the ag, . .

g1

. When we treat the graght, £') as a usual undirected graph, it is thederlying undirected

graphof the digraphG = (V, E), denoted?,,.

1This not a standard terminology. We will however call diegtedges arcs in the sequel.

27
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5. Digraphd is connectedf G, is connected. Theomponent®f GG are the directed sub-
graphs ofG that correspond to the componentg%f. The vertices ofs are connected if
they are connected i&,,. Other notions for undirected graphs can be used for digraph
as well by dealing with the underlying undirected graph.

6. Verticesu andv arestrongly connected there is a directed—v path and also a directed
v—u path inG.

7. Digraph( is strongly connected every pair of vertices is strongly connected. By con-
vention, the trivial graph is strongly connected.

8. A strongly connected componefitof the digraph is a directed subgraph &f (not a
null graph) such thatf is strongly connected, but if we add any vertices or arcs thén
it is not strongly connected anymore.

Every vertex of the digrapty’ belongs to one strongly connected componerti gcompare to
Theorem 1.3). However, an arc does not necessarily beloagytstrongly connected compo-
nent ofG.

Example. For the digraphG

the strongly connected components@re }, ), ({ve, vs, v4}, {€3, €4, €5}), ({vs},0) and({vs}, ).

The condensed grapld-. of the digraphG is obtained by contracting all the arcs in every
strongly connected component.

Example. (Continuing from the previous example) The condensed gsaph

&

Vvq Vs
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3.2 Directed Trees

A directed graph igjuasi-strongly connectatione of the following conditions holds for every
pair of verticesu andv:

() u=wvor
(i) there is a directed—v path in the digraph or
(i) there is a directed—u path in the digraph or
(iv) there is a vertexv so that there is a directec—u path and a directed—v path.
Example. (Continuing from the previous example) The digrdpls quasi-strongly connected.

Quasi-strongly connected digraphs are connected but wessarily strongly connected.
The vertexv of the digraphz is aroot if there is a directed path fromto every other vertex

of G.
Example. (Continuing from the previous example) The digra@pbnly has one root; .
Theorem 3.1. A digraph has at least one root if and only if it is quasi-stgbnconnected.

Proof. If there is a root in the digraph, it follows from the definitithat the digraph is quasi-
strongly connected.

Let us consider a quasi-strongly connected digrapand show that it must have at least
one root. IfG is trivial, then it is obvious. Otherwise, consider the egrsetV = {v,...,v,}
of G wheren > 2. The following process shows that there must be a root:

1. SetP + V.

2. Ifthere is a directed—v path between two distinct verticesandv in P, then we remove
v from P. Equivalently, we seP «+ P — {v}. We repeat this step as many times as
possible.

3. If there is only one vertex left ii?, then it is the root. For other cases, there are at least
two distinct vertices, andv in P and there is no directed path between them in either
direction. Since~ is quasi-strongly connected, from condition (iv) it follewhat there
is a vertexw and a directedv—u path as well as a directad—v path. Sinceuisin P, w
can not be inP. We remove, andv from P and addw, i.e. we setP < P — {u,v} and
P+ PU{w}. Go back to step #2.

4. Repeat as many times as possible.

Every time we do this, there are fewer and fewer verticeB.irEventually, we will get a root
because there is a directed path from some vertéxtmevery vertex we removed from. [

The digraphG is atreeif G, is a tree. It is airected treef GG, is a tree and~ is quasi-
strongly connected, i.e. it has a root.léaf of a directed tree is a vertex whose out-degree is

Zero.
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Example.

S9AE”| 9

jlo]e}]

\» >0 >e

Theorem 3.2. For the digraphG with n > 1 vertices, the following are equivalent:
() G is adirected tree.

(i) Gis atree with a vertex from which there is exactly one dirdqtath to every other vertex
of G.

(i) G is quasi-strongly connected bGt— e is not quasi-strongly connected for any arm
G.

(iv) G is quasi-strongly connected and every vertexGohas an in-degree of except one
vertex whose in-degree is zero.

(v) There are no circuits irG (i.e. not inGG,) and every vertex ofr has an in-degree of
except one vertex whose in-degree is zero.

(vi) G is quasi-strongly connected and there are no circuit&i@i.e. not inG,).

Proof. (i)=-(ii): If G is a directed tree, then there is a root. This implies thaetiea directed
path from the root to every other vertexdh(but not more than one path sin€g is a tree).
(i))=(iii): If (ii) is true, then G obviously is quasi-strongly connected. We will prove by
contradiction by considering the counter hypotheS$isere is an are in G such thatG — e is
quasi-strongly connected. The arcs not a loop becaus@ is a directed tree. Let andv be
the two different end vertices ef There does not exist a directedv path or a directed—u
path inG — e (otherwise(z,, would have a circuit). Therefore, there is a verteand a directed
w—u path as well as a directad— path. However, this leads to the existence of two directed
w—u paths or two directed—v paths inG depending on the direction of the arcThen, there
is a circuit in the tree~,,. (/ by Theorem 1.6).
(i) =(iv): If G quasi-strongly connected, then it has a ro¢theorem 3.1) so that the in-
degrees of other vertices arel. We start by considering the counter hypothesisere exists
a vertexv # r andd—(v) > 1. Then,v is the terminal vertex of two distinct ar¢s, v) and
(w,v). If there were a loop in G, thenG — e would be quasi-strongly connecteg/(). Thus,
u # v with w # v. Now, there are two distinct directed trails fronto v. The first one includes
(u,v) and the second one includes, v). We have two possible cases:




CHAPTER 3. DIRECTED GRAPHS 31

u u
\Y
r Vv r
W w

In the digraph on the left, the paths« andr—w do not include the arcéu, v) and (w, v).
Both G — (u,v) and G — (w,v) are quasi-strongly connected. In the digraph on the right,
the r—u path includes the ar@w, v) or (as in the figure) the—w path includes the argu, v).

In either case, only one aff — (u,v) and G — (w,v) is quasi-strongly connected because
the root isr (Theorem 3.1).{/) We still have to show thai~(r) = 0. Let us consider the
counter hypothesisi~—(r) > 1. Then,r is the terminal vertex of some atc However, the tree

G — e is then quasi-strongly connected sincs its root (Theorem 3.1).4()

(iv)=(v): If (iv) is true, then it is enough to show that there areamguits inG,. The sum
of in-degrees of all the vertices (& is n — 1 and the sum of out-degrees of all the vertice&in
isalson — 1, i.e. there are — 1 arcs inGG. SinceG is quasi-strongly connected, it is connected
and it is a tree (Theorem 2.1). Therefore, there are no ¢tFauc,,.

(V)=-(vi): If we assume that (v) is true, then there are- 1 arcs inG (compare to the
previous proof). By Theorem 2.%; is a tree. We denote bythe vertex satisfying condition
(v). By Theorem 2.1, we see that there is exactly one path yoo#rer vertex ofG' from r.
These paths are also directed. Otherwisgy-) > 1 or the in-degree of some vertex on that
path is> 1 or the in-degree of some other vertex other tham that path is zero. Hencejs a
root andG is quasi-strongly connected (Theorem 3.1).

(vi)=(i): If G is quasi-strongly connected, then it has a root (Theorem JBinced is
connected and there are no circuitginit is a tree. 0J

A directed subgrapfi” of the digraph(s is adirected spanning tred 7' is a directed tree
andT includes every vertex af.

Example.

Theorem 3.3. A digraph has a directed spanning tree if and only if it is gestsongly con-
nected.

Proof. If the digraphG has a directed spanning trég then the root off” is also a root foiG
and it is quasi-strongly connected (Theorem 3.1).

We now assume thdt is quasi-strongly connected and show that it has a diregiaarsng
tree. IfG is a directed tree, then it is obvious. Otherwise, from TheoB.2, we know that there
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is an arce in GG so that if we remove, GG remains quasi-strongly connected. We systematically
remove these kind of arcs until we get a directed tree. (Coenfiathe proof for Theorem
2.2) O

3.3 Acyclic Directed Graphs

A directed graph with at least one directed circuit is saideaoyclic. A directed graph iacyclic
otherwise. Obviously, directed trees are acyclic but thrense implication is not true.

Example. The digraph

is acyclic but it is not a directed tree.

Theorem 3.4.In an acyclic digraph, there exist at least oseurce(a vertex whose in-degree
is zero) and at least on&nk (a vertex whose out-degree is zero).

Proof. Let G be an acyclic digraph. I€z has no arcs, then it is obvious. Otherwise, let us
consider the directed path

Vigy €515 Viys €hgy v v+ 5 €y Uiy
which has the maximum path length SinceG is acyclic,v;, # v;,. If (v,v;,) is an arc, then
one of the following is true:

e v # v, foreveryvalueot =0,..., k. Then,
v, (Ua Uio)a Vigy €51y Uiy €joy - - -5 €y Uiy
is a directed path with length+ 1. 4/

e v = v;, for some value of. We choose the smallest suchThen,t > 0 because there are
no loops inG and

Vigs €41 Vigs €jas - - -5 €jy5 Uiy (U, Uiy ), Vi

is a directed circuity/
Hence,d (v;,) = 0. Using a similar technique, we can show thatv;, ) = 0 as well. O

If G = (V, E) is a digraph withn vertices, then a labeling of the vertices with an injective
functiona : V' — {1,...,n} which satisfies the conditiom(u) < «(v) whenever(u, v) is an
arc inG is known agopological sorting



CHAPTER 3. DIRECTED GRAPHS 33

Theorem 3.5. We can sort the vertices of a digraph topologically if andyoiflthe graph is
acyclic.

Proof. If the digraph is cyclic, then obviously we can not sort theiges topologically.
If the digraphG is acyclic, then we can sort the vertices in the following mem?

1. We choose a vertex which is a sink. It exists by Theorem 3.4. We s€t) < n,
G+ G—vandn <+ n—1.

2. If there is just one vertexin G, seta(v) + 1. Otherwise, go back to step #1. O

2This is known asvlarimont’s Algorithm The algorithm itself contains other items, too. The oragjirefer-
ence is MaRIMONT, R.B.: A New Method of Checking the Consistency of Precedéviatrices.Journal of the

Association for Computing Machine6y(1959), 164-171.



Chapter 4

Matrices and Vector Spaces of Graphs

4.1 Matrix Representation of Graphs
Theadjacency matrivof the graphG = (V, E) is ann x n matrixD = (d;;), wheren is the
number of vertices g, V = {vq,...,v,} and

d;; = number of edges betweenandv;.

In particular,d;; = 0 if (v;, v;) is not an edge iG7. The matrixD is symmetric, i.eD™ = D.

Example.
02100
21010
D=|10300
01000
00000

Obviously, an adjacency matrix defines a graph completelp @m isomorphism.
The adjacency matrix of a directed graptis D = (d;;), where

d;; = number of arcs that come out of vertgxand go into vertex,.

Example.

_ o O
o O OO
_ o O O

N O = O

Theall-vertex incidence matrigf a non-empty and loopless graph= (V| FE) isann x m
matrix A = (a;;), wheren is the number of vertices i, m is the number of edges i and

aij

_J 1ifv;is an end vertex of;
] 0 otherwise.

34
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Example. €
Vi V2 e1 ey e3 ey
€ 1 110\wn
€3 €y o\ 11 0 1 | o
A= 001 0 |ouws
0 0 01 |w
V3 Va 000 0/ v

The all-vertex incidence matriof a non-empty and loopless directed graphs A = (a;;),
where

—1if v; is the terminal vertex of;

1 if v, is the initial vertex ofe;
awW:
0 otherwise.

Example.

€1 €9 €3 €4 €5
1 -1 -1 -1 0\ v
1 1 0 0 -1 |uv
0O 0 0 0 0 [ws
0 O 1 1 1/ vy

Va

Since every column of an all-vertex incidence matrix camgagxactly two non-zero num-
bers, two ones, we can remove a row and still have enoughmafioon to define the graph. The
incidence matriof a graph is obtained by removing a row from the all-vertextdence matrix.

It is not unique because there argossible rows to remove. The vertex corresponding to the
row removed is called theeference vertex

Similarly, every column in the all-vertex incidence maioixa digraph contains exactly two
non-zero numbersi-1 and—1. We can remove a row from the all-vertex incidence matrix and
obtain theincidence matrix Notice that the rows of an all-vertex incidence matrix amedrly
dependent because the sum of rows is a zero vector.

Theorem 4.1. The determinant of an incidence matrix of a nontrivial tree-il, regardless of
whether the tree is a directed graph or not.

Proof. We use induction on, the number of vertices in the tree.

Induction Basisn = 2 and it is obvious.

Induction HypothesisThe theorem is true far < k. (k > 2)

Induction StatemenfThe theorem is true far = & + 1.

Induction Statement Prootet 7" be a tree which hak + 1 vertices and leA be an (arbi-
trary) incidence matrix of . 7" has at least two pendant vertices (Theorem 2.3). We choose a
pendant vertex; which is not the reference vertex Afand the edge; which is incident on;.
Then,

ap = (£)1 and a;; =0, whenj # t.
We expand the determinant pf | by thei'® row:

[A] = (&)(-1)""A,
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whereA’ is the minor corresponding to,. We write7” = T' — v; which is also a treex{ is a
pendant vertex). We use the induction hypothesis td 48t= +1 because\’ is obviously an
incidence matrix off”. O

Corollary. If the digraphG has no loops, then the rank of its all-vertex incidence masi
p(G).

Proof. If we rearrange the rows or columns of the all-vertex incaiematrix, the rank of the
matrix will not change. Let us rearrange the vertices and srgroup them by components.
Then, the all-vertex incidence matrix is a block diagonatriran which each block is an all-
vertex incidence matrix of a component.

1* compo-
nent
2nd -
compo 0
nent
(@)
k™ compo-
nent

We denote; as the number of vertices in tli& component. Every component has a spanning
tree whose incidence matrix has a nonzero determinant bgréhe4.1, i.e. the matrix is not
singular. The all-vertex incidence matrix of tfi& component is obtained by adding columns
and one row to an incidence matrix of the corresponding spgninee. The row added is
linearly dependent of other rows so that the rank of this m&rthe same as the rank of the
incidence matrix{ n; — 1). Notice that in the special case when a component is tritha!
rank is zero= 1 — 1. Therefore,

rank of A = sum of the ranks of the components
= —1) 4+ (ng—1)
=ny+ -+ —k = p(G). O

=N

Remark. From this proof, we can also get a basis for the row space arcctiumn space of
the all-vertex incidence matrix. The columns correspogdmthe branches of the spanning
forest of G are a basis of the column space. We can get a basis of the rove sgaremoving
one row out of each component block.

4.2 Cut Matrix

If all the cuts of a nontrivial and loopless graph= (V, E') arel, ..., I;, then thecut matrix
of Gis at x m matrixQ = (¢;;), wherem is the number of edges i and

) 1if e; € I; (the cut is interpreted as an edge set)
%= 0 otherwise.
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Example. For the graph

V3

the cuts arel; = {e1, e}, Io = {eq, e3,e4} and s = {eq, s, e3}. The cut matrix is

€1 €2 €3 €4
1 00 1\L4L
Q=(0111 |0
11101

Remark. If the graph has: vertices, then it ha§(2” —2) = 2! — 1 cuts. Usually, there are
not this many distinct edge sets. For the cut matrix, we ag bne cut corresponding to an
edge set so that there would not be repeated rows. Even se dheusually too many rows.

If G is a nontrivial and loopless digraph, then we assign anrarlgitlirection to every cut
(V1, V3): theorientationof (11, V5) is from V; to V5. In other words, we consideriented cuts
and we pick only one direction from the two possibilities efithecut matrixQ = (g;;) is

1if e; € I; and they are in the same direction
q;; = § —1if e; € I, and they are in opposite directions
0 otherwise.

Example. For the digraph

Vg

the different cuts (interpreted as edge sets) Bre= {ey, ey, €3,¢e4} (in the direction ofe;),

I, = {es, ey, e5} (in the direction ofes), I3 = {ey, €2, 5} (in the direction ofe;) and I, = 0.
The cut matrix is

€1 €9 €3 €4 €5
1 -1 -1 -1 0\L
o o 1 11 L
Q=1 1 0o 01 |5
0O 0 0 00/
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Since({v},V — {v}) is a cut for every vertex, rows of the all-vertex incidence matrix are
rows of Q. If we are dealing with directed graphs, then these rows naag o be multiplied
by —1.

Theorem 4.2. Every row of the cut matrix of a digraph can be expressed indifferent ways
as a linear combination of the rows of the all-vertex incidematrix. The non-zero coefficients
are either all= +1 orall = —1.

Proof. Let Q be the cut matrix of a digrapy = (V, £') and letA be the all-vertex incidence
matrix. Let(V;,V,) (note that it is oriented) be the cut corresponding toitheow of Q.
Reindexing if needed, we can assume that

Vi=Av,...,v.} and Vo ={v.41,...,0,}.
We write
q; =i rowofQ and a, =t rowof A.
We show that

T n
q; = E Q= — E ag,
t=1

t=r+1

which proves the theorem. Lét,, v,) = e, be thek™ arc of G. Then,

ayr = k'™ element of the vectas, = 1,
ag. = k™ element of the vectox, = —1

and
ajp =0 if j#p.q.
We get four cases:

e v, € Vy andy, € Vo: Nowp < randg > r + 1s0g;;, =1 and

T n
Gik = E Qg = — E Q-
t=1

t=r+1

e v, € Vo andy, € V3: Nowp > r 4+ 1 andg < r sog;; = —1 and

n

T
Gik = E Qg = — g Q.
t=1

t=r+1

e v, € Vyandy, € Vi: Nowp < randg <rsog; =0and

”
qik = E Qg = — Qpg1k — 0 — Qpk -
S~—~— ~

t=1 =0 =0

e v, € Vo andy, € Vo: Nowp > r 4+ 1andg > r 4+ 1 sog;, = 0and

n

Qik = Q1+ -+ Q. = — E At -
~— ~—~
-0 -0 t=r+1
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The statements above are valid for every O

Example. (Continuing from the previous example) The correspondivgaf/; is
(1,-1,-1,-1,0)=(1,-1,-1,-1,0) = —(—1,1,0,0,—1) — (0,0,0,0,0) — (0,0,1,1,1).
Corollary. The rank of the cut matrix of a digraghi is p(G).

Proof. The all-vertex incidence matriA of G is also a submatrix of the cut matr of G.
Then, (by Corollary of Theorem 4.1)

rank(Q) > rank(A) = p(G).

On the other hand, by Theorem 4.2, every rowptan be expressed as a linear combination
of the rows ofA. Therefore,

rank(Q) = rank(A) = p(G).

Another consequence is that the cut ma@xan be expressed as
Q = AlAa

where the elements o, are( or 1. In addition, the matrixA ; can be constructed from the
process in the proof of Theorem 4.2.

If the graph(G is connected, then it has a spanning tfeend an associated fundamental cut
set. The fundamental cut sets are also cuts (when cuts arprieted as edge sets). Therefore,
the cut matrixQ of G has a submatrixQ; that corresponds to these fundamental cut sets.
This matrix is called théundamental cut set matrixSimilarly, the connected digraph has
a fundamental cut set matrix: if we interpret a fundamentidlset as a set, then the direction
of the cut is chosen to be the same as the direction of thespwneling branch of . If we
rearrange the edges 6fso that we have the branches first and sort the fundamentsétsuin
the same order, then we get the fundamental cut set matieiform

Q= (Li1]|Qeu),
wherel,,_; is the identity matrix withn — 1 rows. The rank of); is thusn — 1 = p(G).

Example. (Continuing from the previous example) We left out vertexo we get a connected
digraph. We choose the spanning tree

€ -
V1 >0 Vo

T e
Va

The fundamental cut sets afe = {es, ey, e5} (in the direction ofe3) and I3 = {ey, es, €5} (in
the direction of,). Then,
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€1 €3 €2 €4 €5
(1 0|-10 1\I;
Qf‘(o 1‘ 011)12

€1 €9 €3 €4 €5

and

1 -1 -1 -1 0
Q=0 0 1 11 |«
1 -1 0 01)«

4.3 Circuit Matrix

We consider a loopless gragh= (V, E') which contains circuits. We enumerate the circuits of
G: C4,. .., Cy. Thecircuit matrixof G is anf x m matrixB = (b;;) where

1 if the arce; is in the circuitC;
] 0 otherwise

(asusualE = {ey, ..., en}).

The circuits in the digrapli- areoriented i.e. every circuit is given an arbitragirection
for the sake of defining the circuit matrix. After choosing tbrientations, the circuit matrix of
G isB = (b;;) where

1 if the arce; is in the circuitC; and they in the same direction
bi; = § —1if the arce; is in the circuitC; and they are in the opposite direction
0 otherwise.

Example. For the directed graph

the circuits are

e e
1 1
Vl V2 Vl V2 V2
e €3 e € € &s\&
) 2)
V3 V3 V3

and the circuit matrix is
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€1 €9 €3 €4

1 0 -1 1\¢
B=| -1 1 0 -1 ]0C

0 -1 1 0/ Cs

If the graphdG' is connected and contains at least one circuit, then it haspanning tree
T* and the corresponding fundamental circuits. By choosimgcthrresponding rows of the
circuit matrix B, we get anim — n + 1) x m matrix B¢, called thefundamental circuit matrix
Similarly, a connected digrapi with at least one circuit has a fundamental circuit matie t
direction of a fundamental circuit is the same as the dioaabif the corresponding link if™.

When we rearrange the edgeg®$o that the links of * come last and sort the fundamental
circuits in the same order, the fundamental circuit matkes the form

Bt = ( B | Lu—nt1 ),

wherel,,,_,,. 1 is the identity matrix withn—n+1 rows. The rank 0By is thusm—n+1 = pu(G)
and therankoBis>m —n 4+ 1.

Example. (Continuing from the previous example) We left out verteso we get a connected
digraph (see p.34) and we chose the spanning tree

€ -

T e
V4

The fundamental circuits are

and

€1 €3 €2 €4 €5
1 01 0 0\Cy
B; = 0 —1/0 1 0 |Cy
-1 —=1/0 0 1 /(5
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Theorem 4.3. An oriented cut and an oriented circuit of a digraph have aeremumber of
common arcs. Half of these arcs have the same direction isuhand in the circuit, and the
remaining arcs have opposite directions in the cut and indinauit.

Proof. Compare to the proof of Theorem 2.6. O
Theorem 4.4. For a digraph,BQ" = O (zero matrix).

Proof. By the previous theorem, half of the nonzero numbers in thg@udmuct corresponding
to each element dBQ" are+1. The remaining nonzero numbers aré. Therefore, the dot
product is= 0. O

Theorem 4.5.1f the digraphG contains at least one circuit, then the rank of its circuittma
B is u(G). Furthermore, ifG is connected, then the circuit matrB® can be expressed as
B = B,By, where the matriB, consists 06’s and+1’s, and the cut matrix) can be expressed
asQ = Q;Q¢, where the matriXQ, consists of’s and+£1's.

Proof. First we consider the case whéhis connected. We choose a spanning fesf G and
rearrange the: edges ofz so that the branches @f come first and the links df* come last.
We sort the fundamental cut sets in the same order as theltl@saad links. Then,

Qf = ( In—l ‘ ch ) and Bf = ( Bft ‘ Im—n+1 ) .
The blocks ofB can be constructed in a similar way:
B=(B,|B;).

SinceQ; is a submatrix of) andB; is a submatrix oB, it follows from Theorem 4.4 that

T In—l
0= BfoT == ( Bft ‘ Im—n+1 ) ( In—l ‘ ch ) = ( Bft ‘ Im—n+1 ) ( QT )
fc
=BuL1 + L1 Qg = Bi + Qg
Hence
Bft = _Q;l;
Furthermore, sinc€); is a submatrix of), we can use the same theorem to get

I,
O:BQE:(Bl‘BQ)(In—l‘QfC )T:(B1‘B2)< QTl)
fc
=Bil,_; + B.Q;, = B; — ByBy;.

Hence

B=(B:By|B; ) =By ( By | Lint1 ) = BBy,
as claimed. In the same waf) can be expressed & = Q;Q;, as claimed, which is clear
anyway since the rank &) is n» — 1 and its elements afés and+1's.

Every row ofB is a linear combination of the rows corresponding to the &mental circuits
and the rank oB is at most equal to the rank &; = m — n + 1. On the other hand, as we
pointed out earlier, the rank & is > m —n + 1. Thus,rank(B) = m —n+ 1 (= p(G)) for a
connected digraph.

In the case of a disconnected digraplwhich contains at least one circuit), it is divided into
componentsi > 2 components) and the circuit matiXis divided into blocks corresponding
to the components (compare to the proof of the corollary aforem 4.1), in which case

k
rank(B):Z(mi—ni+1):m—n+k:,u(G). O

=1
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Notice that the proof also gives the formuBy, = —Q., which connects the fundamental
cut matrix and the fundamental circuit matrix.

4.4 An Application: Stationary Linear Networks

A stationary linear networks a directed graply that satisfies the following conditions:

1.
2.
3.

G is connected.
Every arc ofz belongs to some circuit and there are no loop&'in

Every arce; in G is associated with a numbeér called thethrough-quantityor flow. If
there aren arcs inGG, then we write

(through-vectoy.

. Every vertex; in GG is associated with a numbgy called thepotential Furthermore, the

across-quantityr potential differencef the arce; = (v;,, v;,) is
Uj = Piy — Piy-
If there aren vertices andn arcs inG, then we write

b1 Uy
p= : and u=

Pn Um
(potential vectoandacross-vector (Potentials are rarely needed.)
Every arc; is one of the following:

(@) acomponertt for which there is an associated number r; is constant £ 0)
(stationarity) and the following equation links the quées:

u; =i,;r; (linearity).

(b) athrough-sourcefor which the through-quantity; is fixed.
(c) anacross-sourcgfor which the across-quantity; is fixed.

(Kirchhoff’s Through-Quantity LawThe sum of the through-quantities of an oriented cut
of GG is zero when the cut is interpreted as an edge set and the fsagthiugh-quantity
is changed if the directions of a cut and an arc are different.

(Kirchhoff’s Across-Quantity Laywlhe sum of the across-quantities of an oriented circuit
of GG is zero when the sign of an across-quantity is changed if itteettbns of a circuit
and an arc are different.

Not to be confused with a component of a graph!
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Example. A typical stationary linear network is an electrical cir¢wvith linear resistors, con-
stant current sources and constant voltage sources. The@oemts are resistors and are the
resistances. Equation 5.(a) is Ohm’s Law.

We take a spanning trég of a stationary linear network, its fundamental cut matrig;
and its fundamental circuit matri®;. Let us rearrange the arcs in these matrices and veictors
andu like we did before. That is, the branchesioWill come first followed by the links of ™.
Kirchhoff's Laws can then be written as

Qi=0 and Bu=0.

On the other hand, the rows of the fundamental cut ma@ixspan all the rows of), and
similarly rows of the fundamental circuit matri8; span the rows oB. Then, Kirchhoff’s
Laws can also be written as

in =0,_1 and Biu = Om,nJrl.

Let us form the diagonal matric& = [k, ..., k] andL = [{4,..., ¢, ], where
—r; if e; is a component 1 if e; is a component
k;j = ¢ 1if ¢; isathrough-source  and /; = < 0if ¢; is a through-source
0 if e; is an across-source 1 if e; is an across-source,
and them-vectors = (sy,...,sn,)T, where

0 if e; is a component
; = { 1, if e; is athrough-source
u; if e; is an across-source.

S

Then, all the information can be expressed as a system @airleguations

K L ; S
Qf O(nfl)xm <T) = 0,1 )

O(mfn+1)><m Bf

0m—n+1

known as thdundamental equationg he through and across quantities can be solved (ideally)
if r; and the sources are given.

Remark. The same procedure can be applied to form state (diffel@rtpiations fordynamic
networks, which have nonstationary components.

The matrix of this system of linear equations does not hate teonsingular and the system
does not even have to have a unique solution at all. For exagnmpthe matrix above, we can
easily see that it is singular if some circuit only considta@oss-sources or if some cut only
consists of through-sources. As a matter of fact, this isothlg case when the through and
across quantities are not defined uniquely if the constgnége real numbers with the same
sign (and often otherwise t00).

We choose a specific spanning tfE¢o explore these concepts more carefully:

Lemma. If no cut of G consists of only through-sources and no circuittcotonsists of only
across-sources, thed has a spanning tre&” such that every across-source is a branclyof
and every through-source is a link of.
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Proof. If G satisfies the hypothesis, then we first choose a dighdplthich has every vertex
and across-source (arc) 6f There are no circuits in this digraph. Then we add compatent
M one by one and try to come up with a spanning tree. If this &ilsome point, thetr has a
cut with only through-sources, which is impossible. O

Now let us assume that no cut 6f consists of only through-sources and no circuitCbf
consists of only across-sources. We use the spannind/tr@entioned in the lemma. We
rearrange the arcs @f so that (as before) the branchesio€ome first. Within these branches,
the across-sources come first followed by components. &ilyilthe links are rearranged so
that the components come first and the through-sources @sne |

The system ofm equations can then be written as

O O @) @) 1 O OO iy
O R O O O I OO io
O O -R, O O O 10 i3
O O O I O O OO iy
I O Qu: Qi O O OO0 u
O I Qxa Qe O O OO Us
O O O O B11 B12 I O us
O O O O B21 B22 O 1 Uy

S1 \ < across-sources (in branches)

0 <— components (in branches)

0 <— components (in links)
_ sy | < through-sources (in links)
- 0 < fundamental cut sets (across-sources)

0 < fundamental cut sets (components)

0 < fundamental circuits (components)

0 <— fundamental circuits (through-sources)

where thd’s are identity matrices of the right dimensions, (s are zero matrices of the right
dimensions and th@’s are zero vectors of the right dimensions.

Remark. Here we assume that has all these four types of arcs (across-source branch, com-
ponent branch, through-source link and component link) ottmer cases (for example, when
there are no through-sources), we leave the correspondingycolumns and elements out of
the system of equations. Other cases are treated in a simagr

Solving the equations, we get
u=s , w=Rib , w=Riz , iL=s

which leaves this system of equations:

I o Qu O i Q1282
o I Qa1 O iy _ Q2282
O B12R1 R2 O i3 B1181
O B22R1 O I Uy B2181

Thus,

i = —Quiz — Qa2 , Iy = —Qoiz — Qo282 , uy = —BpRiiy — Bys;.
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From the results in the previous section, we get
B:(Bn B1z):_QT:_(Q11 Qm)T:(—a‘—le)
t Ba; | B fe Qa1 | Qa2 — ?2 ‘ — ;FQ '
Therefore B;; = —Q7, andB, = —QJ,. Finally, there is only one set of equations fgr

(Q;FlRlQQl + Ry)iz = Q1T151 - Q;F1R1Q2282-

The matri¥ of this system of equations can written as

QrQFlRlQerRQ:(QQTl‘I)(RoliROZ)(le).

We can see that it is not singular if the diagonal elemen®® 0dndR, are all positive or all
negative.

Therefore, we get

Theorem 4.6. If the constants; are real numbers with the same sign, then the fundamental
equations of the stationary linear network have a uniqueitsmh exactly when no cut of the
network consists of only through-sources and no circuihefrietwork consists of only across-
sources.

From the theorem above, we notice that the number of equatierhave to solve (numerically)
is considerably fewer tham.

Example. A mono-frequency AC circuit with passive elements (resistapacitors and induc-
tors) can also be modelled as a stationary linear networke@ram 4.6 does not apply). In the
circuit below, the component values ake= 10 2, C = 100 uF, L = 10 mH and the current
source is

I =10cos(1000¢) A.

5

EL

Y
71
@]

W =a

The complex current of the sourcelige’1°, wherej is the imaginary unit. The (angular)
frequency isv = 1000 rad/s. There are no voltage sources. The corresponding digraph is

2This matrix is called thémpedance matrix Similarly, theadmittance matrixcan be constructed from the
blocks of the fundamental circuit matrix
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Vo

Vi

The voltages and currents written as complex exponentials, a= I;,¢71°% andu,, = U},e/190%,
In particular, the current source i = s5 = 10719 We getr;, from the familiar formulae
from electrical circuit analysis:

1
ri=r,=R=10 , rs=——x==-107 , 1o =jwL =10y.
jwC
We choose the ares ande, as the branches of the spanning tfBe Because of the linearity
of the system of equations, the exponential factdf§’ cancel out and we get

~10 0 0O o0 ]ol1 olo o]o L 0
0 —10j0 0 0 |00 1/0 0]0 I 0
0 0 [10;j O [0l 0 O[1 0]0 I, 0
0 0 0 —10/0] 0 00 1]0 I 0
0 0 |0 o010 0[0 0]0 I | | 10
1 0 1 1 [1]0 oflo ofo0 v, | | o
0 1 0 —11]0/0 0[0 0]0 U, 0
0 0 0 0 [0]=1 0]1 0]0 Us 0
0 0 0O 0 |0|=1 1|0 1]0 U, 0
0 0 0 0 |[0]-1 0]0 01 Us 0

Notice that we have left out the across-sources because Hrernone. This system is easily
solved using computer programs, e.g. MATLAB:

»H=[ - 10 0 0 0O o0 1 0 0 0 O0;
0 -10+j 0 0O 0 01 0 0 O0;
0 0 10%j 0O 0 0 0 1 0 O0;
0 0 0O -10 0 0 0 O 1 O0;
0 0 0 01 0 0 0 0 O0;
1 0 1 11 0 0 0 0 0;
0 1 0O -1 0 0 O O O O0;
0 0 0 0O 0 -1 01 0 O0;
0 0 0 0O 0 -1 1 0 1 0;
0 0 0 0O 0 -2 0 0 0 1];
»s=[0 0 0010 0000 0]";
»UV=i nv(H) *s;
»[ WV angl e(WV) abs(WV)]
ans =
-6.0000 + 2.0000i 2.8198 6. 3246
-2.0000 + 4.0000i 2.0344 4. 4721
-2.0000 - 6.0000i -1.8925 6. 3246
-2.0000 + 4.0000i 2.0344 4.4721
10. 0000 0 10. 0000
-60. 0000 +20.0000i 2.8198 63. 2456
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-40. 0000 -20.0000i -2.6779 44,7214
-60. 0000 +20.0000i 2.8198 63. 2456
-20. 0000 +40. 0000i 2.0344 44.7214
-60. 0000 +20.0000i 2.8198 63. 2456

Thus, for example, the complex voltage across the currenteas
us = U5ej1000t — 63.25¢0(1000t+2.82)
and the real voltage i83.25 cos(1000t 4 2.82) V.
Kirchhoff’s Through-Quantity Law can also be written in thoem
Ai=0,,
whereA is the all-vertex incidence matrix @¢f. Furthermore,
ATp = —u.

Hence
uei=u'i=—-prAi=0.

This result only depends on the structure of the digrépfthrough the all-vertex incidence
matrix). Now we get the famous theorem:

Theorem 4.7. (Tellegen)f two stationary linear networks have the same digraph wikre-
sponding through-vectoiis andi, as well as corresponding across-vectoarsandus,, then

u ei, =0 and uyei; =0.
If we apply this to the case when the two networks are exalsysame= ), then we get
uei=>0,
known as thd.aw of Conservation of Energy

Remark. More details on this subject can be found e.g.SmAMY & THULASIRAMAN oOf
VAGO, as well asDOLAN & ALDOUS.

4.5 Matrices overGF (2) and Vector Spaces of Graphs

The set{0,1} is called afield (i.e. it follows the same arithmetic rules as real numbefrs) i
addition and multiplication are defined as follows:

+[0 1 x [0 1
00 1 0]0 0
110 10 1

In this case-1 = 1 and1~! = 1. This is the fieldGF(2).

If we think of the element8 and1 of the all-vertex incidence, cut, fundamental cut, circuit
and fundamental circuit matrices of a ("undirected”) gragtelements of the fieldF(2), then
Theorems 4.1, 4.2, 4.4, 4.5 and their corollaries also afgpliyundirected graphs”. (Keep in
mind that—1 = 1 in the fieldGF(2).) The proofs are the same.
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For "undirected” graphs, the vector spaces are over the@€l®). For directed graphs, the
vector spaces are real (i.e. over the fiRld The row space of the cut matrix of a (di)graph is
the cut space Similarly, the row space of the circuit matrix is thecuit space The dimension
of the cut space is the rank of the (di)graph and the dimerditime circuit space is the nullity
of the (di)graph. Furthermore, the cut space and the cispate are orthogonal complements.
(All of these statements follow directly from the result®ab.)

Often, we deal with the above mentioned spaces through apbgri.e. we identify a vector
with the subgraph generated by the corresponding arcseloabe of "undirected” graphs, the
addition of GF(2) vectors corresponds to the ring sum operation.



Chapter 5
Graph Algorithms

5.1 Computational Complexity of Algorithms

The complexityof a problem is related to the resources required to comps@uion as a
function of the size of the problem. The size of a problem iasueed by the size of the inpit,
and the resources required are usually measured by timeébgnohsteps) and space (maximum
amount of memory measured appropriateDgcision problemsr yes-or-no questiorsre very
common. Read HPCROFT& U LLMAN for classical complexity theory.

To make computational complexities comparable, we needreson some specific math-
ematical models for algorithms. For example, consider agimg with Turing Machines and
refer to courses in Theoretical Computer Science and Madtieah Logic. We haveletermin-
istic andnondeterministiversion of algorithm models. In the deterministic versithgre are
no choices to be made. In the nondeterministic versionetisea choice to be made somewhere
on the way. For a nondeterministic algorithm, we have to niakeollowing assumptions so
that we can actually solve problems:

1. The algorithm terminates at some point no matter how weshithe steps.
2. The algorithm can terminate without yielding a solution.

3. When the algorithm terminates and yields a solution, theti®n is correct (it is possible
to have more than one solution).

4. For decision problems, if the algorithm fails to give aipes answer (yes), then the
answer is interpreted to be negative (no).

5. If the problem is to compute a value, then the nondetestinalgorithm has to give a
solution for every input (value of the function).

Nondeterministic algorithms are best treatedexsfication procedurefor problems rather than
procedures for producing answers.

Computational complexity is consideredymptotically that is for large problems, time
or space complexities that differ by constant coefficiemésreot distinguished because linear
acceleration and compression of space are easy to perfoamyikkind of algorithm model.
Although the choice of an algorithm model has a clear impacthe complexity, it is not an
essential characteristic, i.e. it does not change the aaxitplclass. Often, we use theg-O
notationfor complexities.O(f(V)) refers to the class of functiong V) such that ifN > N,
holds, therng(N)| < Cf(N) holds, where”' is a constant.

50
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Without exploring algorithm models any further, we defineoae of important complex-
ity classes. The time complexity clags(deterministic polynomial time problepnsonsists of
problems of (input) sizéV where it takes at mogt( V) steps to solve the problem using deter-
ministic algorithms.p(N) is some problem dependent polynomial’éf The time complexity
classN'P (nondeterministic polynomial time problept®nsists of problems of siz& where it
takes at mosp(/N) steps to solve the problem using nondeterministic algm$thOnce again,
p(N) is some problem dependent polynomial6f

Time complexity clasgo—NP (complements of nondeterministic polynomial time prob-
lem9 consists of decision problenvghose complements are jKP. (The complementf a
problem is obtained by swapping the positive and the negatiswer.)

Obviously,? € NP and (for decision problemg} C co—N"P. Whether or not the inclu-
sion is proper is an open problem, actually quite a famoublpno. It is widely believed that
both of the inclusions are proper. It is not known if the fallng holds for decision problems:

NP =co—NP or P=NPnNco—NP

Most researchers believe that they do not hold.

The space complexity clagdSPACE (deterministic polynomial space problent®nsists
of problems of (input) sizeV where it takes at mogi(/N) memory units to solve the prob-
lem using deterministic algorithmg(V) is some problem dependent polynomial’éf The
space complexity clas§ PSPACE (nondeterministic polynomial space problgmensists of
problems of sizeV where it takes at mogi V) memory units to solve the problem using non-
deterministic algorithms. Once agapi/V) is some problem dependent polynomialof It is
known that

NP C PSPACE = NPSPACE,

but it is not known whether the inclusion is proper or not.

An algorithm may include some ideally generated random rermbThe algorithm is then
calledprobabilisticor stochastic The corresponding polynomial time complexity clas81RP
(random polynomial time problents bounded-error probabilistic polynomial time problems
Some stochastic algorithms may fail occasionally, thahisy produce no results and terminate
prematurely. These algorithms are calless Vegas algorithmsSome stochastic algorithms
may also produce wrong answers (ideally with a small prditgbi These kind of algorithms
are calledMonte Carlo algorithms Some stochastic algorithms seldom yield exact solutions.
Nevertheless, they give accurate approximate solutiotis Rvgh probability. These kind of
algorithms are calledpproximation algorithms

The task of an algorithm may be to convert a problem to anofftes is known aseduction
If problem A can be reduced to another probléhby using a (deterministic) polynomial time
algorithm, then we can get a polynomial time algorithm faslgem A from a polynomial time
algorithm for B. A problem isNP-hard if every problem in\VP can be reduced to it by a
polynomial time algorithm A P-hard problems ard/P-completdf they are actually in\VP.
NP-complete problems are the "worst kind”. If any problemAfiP could be shown to be
deterministic polynomial time, then every problemAfi? would be inP? andP = N'P. Over
one thousand/P-complete problems are known currently.

The old division of problems intéractable and intractable means thaf® problems are
tractable and others are not. Because we believe?hat NP in general N'P-complete
problems are intractable. In the following, graph algorithare either ir® or they are ap-
proximations of some more demanding problems. The size offaut can be for example the
number of nonzero elements in an incidence matrix, the nuofeerticesn or the number of
edgesn or some combination of andm.
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5.2 Reachability: Warshall’'s Algorithm

We only deal with directed graphs in this section. The resalko hold for "undirected” graphs
if we interpret an edge as a pair of arcs in opposite direstion

Problem. We are given an adjacency matrix of the digraph= (V, E/). We are to construct
thereachability matrix® = (r;;) of G, where

B {1 if G has a directed,—v; path

Tij = .
0 otherwise.
(Note thatV = {vy,...,v,}.) In particular, we should note that if; = 1, thenv; is in a
directed circuit.
Warshall's Algorithmconstructs a series af x n matricesEq, . . ., E, where

1. elements oE; are either zero or one.

2. E;<E;;; (:=0,...,n—1) (comparison is done element by element).

3. Eq is obtained from the adjacency matiixby replacing the positive elements with ones.
4. E, = R.

The algorithm is presented as a pseudocode:

procedure Warshall
begin
E = EQ

fori:=1tondo
for j :=1tondo
if (E);; =1thenfor k:=1tondo
(Bl = (B, (B))
i
od
od
end

In this case, the maximizing operation is sometimes cale@bolean sum
max [0 1
0 (0 1

1 |1 1

Let us show that Warshall's Algorithm gives us the desireliits. LetE; denote the value
of E afteri steps.

Statement. (i) If there is a directed path from, to v; such that apart fromv, andv,, the path
only includes vertices in the sgty, ..., v;}, then(E;) = 1.

(i) If vertexwv, belongs to a directed circuit whose other vertices are ing&g vy, . .., v;},
then(E;)s = 1.



CHAPTER 5. GRAPH ALGORITHMS 53

Proof. We will use induction orn.
Induction Basis: = 1. (Eq)y = 1if (Eg)s; = 1, or (Eg)s; = 1 and(Eg);, = 1. We have
one of the following cases:

Induction HypothesisThe statement is true far< /. (¢ > 2)

Induction StatemenfThe statement is true for= ¢.

Induction Statement Prooflet us handle both statements together. The proof forgii) i
given in square brackets. We have two cases:

e v, belongs to the directed path [resp. directed circuit]dots, t [resp./ # s]. Then, we
use the Induction Hypothesis:

(Eg_l)sg =1 and (Eg_l)gt =1 [resp. (Eg_l)sg =1 and (Eg_l)gs = 1],
SO(EZ)st =1 [resp'(EZ)ss = 1]

e v, is eitherv, or v, [resp.v, isv,] or it does not belong to the directed path [resp. directed
circuit] at all. Then, by the Induction Hypothesis

(Er1)se =1 [resp. (Eg1)ss = 1],

SO(EZ)st =1 [resp'(EZ)ss = ]-] |

In Warshall's Algorithm, the maximizing operation is perfted at mosh? times.

5.3 Depth-First and Breadth-First Searches

Problem. We have to traverse through a (di)graph to find some kind dfoes or edges.

We assume that the (di)graph is connected and loopless.is@mmmhected graphs, we have to
go through the components separately. We ignore loops (idifgraph has any.

Depth-First Search, DFS)as many uses. The procedure is a bit different for undidecte
graphs and directed graphs. Therefore they will be treatpdrstely.

Undirected Graphs

We choose a starting vertexroot) to start the search. Then, we traverse an edggr, v)
to go to the vertex. At the same time, wdirect e from r to v. Now, we say that the edge
is examinedand we call it aree edge The vertex- is called thefather of v and we denote it
r = FATHER (v).

We continue the search. At a vertexthere are two cases:
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(1) If every edge incident te has been examined, return to the fathex @ind continue the
process fronFATHER(x). The vertexe is said to becompletely scanned

(2) If there exist some unexamined edges incident,tthen we choose one such edge-
(x,y) and direct it fromz to y. This edge is now said to bexamined We have two
subcases now:

(2.1) If y has not been visited before, then we traverse the edge, visit y and continue
the search fromy. In this casee is atree edgeandFATHER (y) = «.

(2.2) If y has been visited before, then we select some other unexdmilye incident to
z. In this case, the edgeis called aback edge

Every time we come to a new vertex which has never been vibiéate, we give it a distinct
number. The number of the rootis We write

DFN(z) = running number of vertex.

A complete DFS ends when we traverse back to the root and we\hsited every vertex or
when we have found the desired edge/vertex.

DFS divides the edges ¢f into tree edges and back edges. Obviously, the tree edgas for
a spanning tree af7, also known as ®FS tree If we include the directions of the tree edges,
we get adirected DFS tree DFS gives a direction to every edge @& When we use these

directions, we get a digraph whose underlying subgragh ik has the DFS tree as a directed
spanning tree.

Example. For the graph

we start the DFS from a root in the upper left corner. The baitges are marked with two lines.
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The corresponding DFS tree is

In the following, we denote,
(z) 0 if vertex z has not been visited
l‘ _—

1 if vertex z has been visited

andTREE andBACK are set variables containing the directed tree edges arkccoges.

Depth-First Search for Graphs:

1. SetTREE <« (), BACK < () andi « 1. For every vertex: of G, setFATHER(x) < 0
andK (z) < 0.

2. Choose a vertex for which K (r) = 0 (this condition is needed only for disconnected
graphs, see step #6). S8FN(r) < i, K(r) < 1 andu <« r.

3. If every edge incident ta has been examined, go to step #5. Otherwise, choose an edge
e = (u,v) that has not been examined.
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4. We direct edge from « to v and label it examined.
4.1 If K(v) = 0, then set < i+ 1, DFN(v) « i, TREE + TREE U {e}, K(v) « 1,
FATHER(v) < u andu < v. Go back to step #3.
4.2 If K(v) = 1, then seBACK «+- BACK U {e} and go back to step #3.

5. If FATHER(u) # 0, then set: «+— FATHER(u) and go back to step #3.

6. (Only for disconnected graphs so that we can jump from @meponent to another.) If
there is a vertex such thatk'(r) = 0, then set < ¢ + 1 and go back to step #2.

7. Stop.

We denotel” as the DFS tree and as the directed graph obtained from the algorithim.
is a directed spanning tree 6% If there is a directed path fromto v in T, then we call, an
ancestorof v andv adescendernf u. Verticesu andv arerelatedif one of them is an ancestor
of the other. In particular, ifu, v) is an edge of’, thenu is the father ofv andv is asonof w.
An edge(u, v) of G, whereu andv are unrelated, is calledaoss edgeHowever,

Statement. Cross edges do not exist.

Proof. Let« andv be two distinct vertices which are unrelated. Then, (by gsieng connec-
tivity) there are two vertices’ andv’ such that

e FATHER(v') = FATHER(¢'),
e v/ = wu oru' is an ancestor of and
e v/ = v orv' is an ancestor of.

We examine the case whebd'N(u') < DFN(v’) (the other case is obviously symmetrical).
We labelT; as the directed subtree @fwhose root i’ and7; as the directed subtree @f
whose root is’. Obviously, DFS goes through the verticesIgfonly afteru’ is completely
scanned. Furthermore’ is completely scanned only after all the vertice§pfare completely
scanned. Hence, it is impossible to have an gage). O

Directed Graphs

Depth-first search in a (connected and loopless) digtaph similar to the case for undi-
rected graphs. The algorithm divides the arcgximnto four different classes. If the search
proceeds to an unexamined are- (z, y), then the four possible classes are:

(1) If y has not been visited, thens atree edge
(2) If y has been visited, then there are three cases:
(2.1) y is a descendent af in the subgraph induced by existing tree edges. Théna

forward edgeandDFN(y) > DFN(x).

(2.2) = is a descendent afin the subgraph induced by the existing tree edges. Thisn,
aback edgeandDFN(y) < DFN(x).

(2.3) z andy are not related by any of the existing tree edges. Thegs,across edge
andDFN(y) < DFN(x). (Note! It is impossible thaDFN(y) > DFN(x). This is
proven in the same way as we did previously.)
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The directed subgraph of induced by tree edges is called théS forestdirected forest).

If DFN(y) > DFN(x) holds for the arqz, y), then(z, y) is a tree edge or a forward edge.
During the search, it is easy to distinguish the two becéuse) is a tree edge iff has not been
visited and it is a forward edge otherwise D¥N(y) < DFN(z), then(z,y) is a back edge or
a cross edge. During the search, it is easy to distinguistwbdecauséz, y) is a cross edge
if y is completely scanned and it is a back edge otherwise.

In the following, K, FATHER, TREE andBACK are defined as previously. We also have
two new variable* ORWARD andCROSS (their meanings are obvious) and

(2) 1 if = is completely scanned
xT) =
0 otherwise.

Depth-First Search for Digraphs:

1. SetTREE + 0, FORWARD < 0, BACK < (), CROSS «+ 0 andi « 1. For every
vertexz in G, setFATHER(z) < 0, K(z) <— 0 andL(x) < 0.

2. Choose a vertexsuch that'(r) = 0 and seDFN(r) < i, K(r) < 1 andu «+ r.

3. If every arc coming out ofi has already been examined, then 5ét) + 1 and go to
step #5. Otherwise, choose an unexaminea@ atqu, v).

4. Label the are examined.
4.1 If K(v) = 0, then set « i+ 1, DFN(v) « i, TREE + TREE U {e}, K (v) « 1,
FATHER(v) < v andu < v. Go to step #3.

4.2 If K(v) = 1 andDFN(v) > DFN(u), then seFORWARD < FORWARD U {e}
and go to step #3.

4.3 If K(v) = 1 andDFN(v) < DFN(u) andL(v) = 0, then seBACK + BACK U
{e} and go to step #3.

4.4 If K(v) = 1andDFN(v) < DFN(u) andL(v) = 1, then seCROSS «+ CROSS U
{e} and go to step #3.

5. If FATHER(u) # 0, then setu + FATHER(u) and to go step #3.
6. If there is a vertex such that<'(r) = 0, then set < ¢ + 1 and go to step #2.
7. Stop.
Example. DFS in the following digraph starts from a root in the uppélt Isorner and proceeds

like this (back edges are marked with one line, cross edgesrarked with two lines and
forward edges are marked with three lines):
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The corresponding DFS forest is

1 8
[ ]
2 7 9% 013
3
4
5 o< 3
11 10 12
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Theorem 5.1.1f a depth-first search in a quasi-strongly connected digragarts from one of its
roots, then the DFS forest is a directed tree. In particullag DFS forest of a strongly connected
digraph is a directed tree no matter where the search staots f

Proof. Let us prove by contradiction and consider the counter thgm$ The DFS forest’
resulted from a DFS in a quasi-strongly connected digi@ghat began from root is not a
directed tree.

SinceT is a directed forest, the componéiitof 7" which has the root does not contain
some vertex of G. On the other hand, there is a directed path frotmv. We choose the last
vertexu on this path which is irf} and the are = (u,w). Since the vertexv is not in Ty,
the edgee is not a tree edge, a back edge nor a forward edge. Then, itbeusicross edge.
Because the search begam ahe vertexw has to be irff; (v/).

Strongly connected digraphs are also quasi-strongly aiadend any vertex can be chosen
as a root. U

Breadth-first searchBFS, is related to DFS. Let us consider a connected gfaph

Breadth-First Search for Graphs:
1. In the beginning, no vertex is labeled. et 0.
2. Choose a (unlabeled) starting vertefcoot) and label it with.

3. Search the set of vertices that are not labeled and are adjacent to somexviatbeled
with 4.

4. If J # 0, then set < i + 1. Label the vertices i with i and go to step #3.

5. (Only for disconnected graphs so we can jump from one compioto another.) If a
vertex is unlabeled, then set— 0 and go to step #2.

6. Stop.

BFS also produces a spanning tree, calledBR& tree when we take the edges
(vertex labeled withi, unlabeled vertex

while forming.J. One suctiree edgeexists for each vertex ifi. We obtain thelirected BFS tree
by orienting the edges away from the labeled vertex to thaheied vertex. BFS as presented
above does not however orient every edge in the graph. O$lyidte label of a vertex is the
length of the shortest path from the root to it, in other wottedistancefrom the root.

Example. BFS in the graph we had in the previous example starts at airotte upper left
corner and proceeds as follows. (Tree edges are marked widlttoss lines.)
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The corresponding BFS tree is

We obtain the directed BFS tree by orienting the branchesy/dvean the root.

BFS in a digraplt= is very similar to what we just did.

Breadth-First Search for Digraphs:

1.
2.

In the beginning, no vertex is labeled. $et 0.
Choose an unlabeled starting vertexoot) and label it with.

Search the set of terminal vertices of arcs whose initial vertices haverbebdeled with
7 but whose terminal vertices have not been labeled.

If J # (), then set < 7 + 1. Label the vertices itf with : and go to step #3.
If not all vertices have been labeled, theniset 0 and go to step #2.

Stop.
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BFS in a digraph produces a BFS forest (directed forest) wheetake the examined arcs
(vertices labeled with unlabeled verticgs

while forming J. One suctliree edgeexists for each vertex id.

Remark. In addition, BFS can be modified to sort the arcs like DFS.

5.4 The Lightest Path: Dijkstra’s Algorithm

Problem. The edges of a (di)graph are given non-negative weights. wnght of a path is
the sum of the weights of the path traversed. We are to findgheest (directed) path in the
(di)graph from vertex: to vertexv (# w) if the path exists (sometimes also called the shortest
path). We should state if such path does not exist.

Obviously, we can assume that we do not have any loops orlglagalges. Otherwise, we
simply remove the loops and choose the edge with the lowaghiveut of the parallel edges.
From now on, we only consider directed graphs. Undirectaeglys can be treated in the same
way by replacing an edge with two arcs in opposite directigitis the same weight.

We denotex(r, s) as the weight of the ar@, s). Dijkstra’s Algorithmmarks the vertices as
permanenbr temporaryvertices. The label of a vertexis denoted3(r) and we define

(r) = 1 if the label is permanent
T = 0if the label is temporary.

A permanent labeB(r) expresses the weight of the lightest directed path. A temporary
label 5(r) gives an upper limit to this weight (can be). Furthermore, we denote:

(r) the predecessor of vertexon the lightest directed—- path if such a path exists
)=
0 otherwise,

S0 we can construct the directed path with the lowest weight.

Dijkstra’s Algorithm:

1. Setf(u) < 0 and~(u) < 1. For all other vertices, sets(r) < oo and~(r) < 0. For
all verticesr, we setr(r) < 0. Furthermore, seb < u.

2. For every ar¢w, r), wherey(r) = 0 andg(r) > f(w) + a(w,r), set

B(r) + B(w) + a(w,r) and 7(r) + w.

3. Find a vertex* for which~(r*) = 0, 5(r*) < co and

B(r*) = min {5(r)}.

v(r)=0

Set
v(r*) 1 and w <« r*.

If there is no such vertex®, a directed—v path does not exist and we stop.
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4. If w # v, then go to step #2.
5. Stop.

We see that the algorithm is correct as follows. We denoteeffery step):

V1 = {permanently labeled verticks
V, = {temporarily labeled verticés

((V1,V4) is a cut with the completely scanned vertices on one side #met oertices on the
other side.)

Statement. The labels(r) of the vertex: in V] is the weight of the lightest directed+ path
andn(r) is the predecessor efon such a path.

Proof. After step #2, the temporary label ois always the weight of a directed- path with
the lowest weight whose vertices arélinexcept forr (= oc if there is no such path), andr)
is a predecessor afon this path (o= 0). This is because (two cases):

e Before step #2/3(r) = oco. The only "new” vertex inV; is noww S0 every possible
directedu—r path has to visitv. If there is no such path, then the case is obvigi(s )
stays atxo and(r) stays at zero). Let us assume that we have the (lightestteite
u—r path that contains only vertices Bf andr as well. In particularw is included. The
subpath fromu to w has of course the lowest weight. We consider the vestéx V)
which is the predecessor ofon the directed—r path. Ifs = w, then the case is clear. If
s # w, thens has been a before, in which casg(r) can not be= co (step #2) {/ ).

e Before step #25(r) < oco. Then,S(r) is the weight of the lightest directed~- path
whose vertices are i, — {w} except forr. The only "new” vertex inV; is w so every
possible lighter directed—- path has to visitv. If there is no such path, then the case
is obvious ((r) and7(r) remain unchanged). Let us assume that we have a (lighter)
directedu—r path that contains only vertices & andr as well. In particularw is
included. The subpath from to w has of course the lowest weight. We consider the
vertexs (€ V4) which is the predecessor ofon the directedi— path. If s = w, then
the case is clear. f # w, thensisinV; — {w}. Sinces has been a before, there is
a lightest directedi—s path that does not contain (otherwise, we should have chosen
r* in step #3 to be some predecessor @n the directedi—w—s path). Then, we get a
directedu—r path with a lower weight that contaimsand only vertices i, — {w} (v/)-

The permanent label is the weight we seek because of the mation in step #3 ana ()
gives a predecessor pfas we claimed. O

At the end of the algorithm, vertex gets a permanent label or the process stops at step #3
(which means a directed-v path does not exist). The directed path with the lowest weaigh
be obtained by starting from the vertexand finding the predecessors by using the label

If we replace step #4 by

4. Go to step #2.
and continue the process until it stops at step #3, we get
Oifw=u

B(w) = ¢ the weight of the lightest directad-w path if there is one
oo otherwise
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and

(w) the predecessor af on the lightest directed—w path if there is one ana@ # u
W) =
0 otherwise.

Remark. Dijkstra’s algorithm may fail if there are negative weighfBhese cases are investi-
gated in the next section.

5.5 The Lightest Path: Floyd’s Algorithm

Problem. We are to find the lighest path from verteio vertexv (# u) in a digraph or to show
that there is no such path when the arcs of the digraph hava hssigned arbitrary weights.
Note that the weight of a directed path is the sum of the weighthe arcs traversed.

Obviously, we can assume there are no loops or parallel @tb&rwise, we simply remove the
loops and choose the arc with the lowest weight out of thellpaeacs. Floyd's Algorithm only
works for digraphs. We write the weight ¢f, y) asa(x,y) and construct theveight matrix
W = (w;;) where

a(v;, v;) if there is an ardv;, v;)
J oo otherwise.

(Once again} = {vy,...,v,} is the vertex set of the digraph.) Floyd's Algorithm is siamil
to Warshall's Algorithm. It only works if the digraph has negative cycles, i.e. no directed
circuit in the digraph has a negative weight. In this caselitihtest directed path is the lightest
directed walk.

Floyd's Algorithmconstructs a sequence of matriddg, W, ..., W, whereW, = W
and

(Wy);; = weight of the lightest directed—v, path,
where there are only vertices, . . ., v, on the path besides andv;

(= oo if there is no such path).

Statement. WhenW,, is computed fronW,_; by the formula
(Wi)e = min{(Wy_1) s, (Wi_1)sk + (We—1)re},

then we get the previously mentioned sequence of weighicemstif the digraph has negative
cycles, then the sequence is correct up to the point when Ptiee @iagonal elements turns
negative for the first time.

Proof. We use induction o#.

Induction Basisk = 1. Since the digraph is loopless, the diagonal elemen® gtan only
beoco and the lightest directed path (if there is one) is one of tiewing, and the statement is
obvious:
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Induction HypothesisThe statement is true fdr < ¢. (¢ > 2)

Induction StatemeniThe statement is true fdr= /.

Induction Statement Proof he diagonal elements &V,_; have to be nonnegativeq is
permitted) for us to get thig. Let us consider the case where# t. (The cases = t is
analogous.) We have five cases:

e \ertex v, is on the lightest directed path but it is nat or v, i.e. ¢ # s,t. Let us
consider the directed subpath framto v, whose vertices other than andwv, are in
{v1,...,v,_1}. Suppose the lightest directegdv, path of this kind has common vertices
with the directed subpath fromy to v, other thanv, itself, e.g.v,. The directedys—v,—
vp—v; walk we get would be lighter than the original directegw; path. By removing
cycles, we would get a directed—v; path that would be lighter and would only contain
vs as well asv; and the vertices,, ..., v, (v/)- (We have to remember that weights of
cycles are not negative!) Therefore, the directed subpath #, to v, is the lightest di-
rectedv,—v, path which contains the vertices, ..., v,_; as well as, andv,. Similarly,
the directed subpath fromy to v, is the lightest directed,—v; path which contains the
verticesuvy, . .., v,_1 as well asy; andv,. Now, we use the Induction Hypothesis:

(Wé>st < (Wéfl>st
(check the special cag®V, ;) = oc) and

(We)ee = (We1)se + (Wisi)ae

e The directedv,—v; path with the lowest weight exists and = v,. By the Induction
Hypothesis(W,),, = (W,_)s and

(We1)se + (We—1)ee = (We1) e + (Wez1)ee > (Wos1) e = (Wi1) st
since(Wy_1)g > 0 (possibly= o).

e The directedv,—v, path exists and, = v,. By the Induction HypothesigW,), =
(W,_1)s and

(We—1)se + (We—1)ee = (Woe1)se + (Woee1)oe > (Woo1)se = (Woo1) s,
since(W,_1)y > 0 (possibly= o).

e The lightest directed,—v, path exists but, is not on the path. Now, we construct the
lightest directed),—v, path and the lightest,—v; path which, in addition to the end ver-
tices, contain only vertices, . .., v,_1, if it is possible. By combining these two paths,
we get a directed,—v; walk. By removing possible cycles from this walk, we get an as
light or even lighter,—v, path, which only contains vertices, . . ., v, as well asv, and
v;. (We have to remember that weights of cycles are not nedpfiveerefore, this is a
case where

(Wei1)se + (West)ee > (Wes1) s

and the equation in the statement gives the right resulhelfet is no directed,—v, path
or v,—v,; path, then it is obvious.

e The lightest directed,—v; path does not exist. ThefiW,),, = co and(W,_;)s = oc.
On the other hand, at least one of the elemé¢W5_;),, or (W,_;), is = oo because
otherwise we would get a directegv; path by combining the,—v, path with thev,—uv,
path as well as removing all possible cyclgg . [
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Floyd’s Algorithm also constructs another sequence of icegiZ, . . ., Z,, in which we
store the lightest directed paths in the following form

¢ wherev, is the vertex followingy; on the lightest directed
v;—v; path containing only vertices andv; as well as, ..., v
(Zr)ij = (if such a path exists)

0 otherwise.

Obviously,
(ZO)U _ {j if (W)ZJ 7£ o0

0 otherwise.

The matrixZ; (k > 1) of the sequence can be obtained from the m&igix; by

(Z ) _ (Zkfl)ik if (kal)z‘k + (Wk71)kj < (kal)ij
m (Zx_1);; otherwise,

so the sequence can be constructed with the sequdhcéV 4, ..., W,, at the same time.
Finally, Floyd's Algorithm is presented in the following gasdocode. We have added a part
to test if there are negative elements on the diagonal andahstruction of theéZ, ..., Z,
sequence of matrices.

procedure Floyd
begin
W =W,
k:=0
fori:=1tondo
for j:=1ton do
if (W)Zj = oo then

(Z);; =0
else
(Z)ij =7

fi
od
od
while £ < n and Tes{ W) do
lteration W, Z, k)
od
end

subprocedureTes{ W)
begin
fori:=1tondo
if (W);; < 0then
return FALSE
fi
od
return TRUE
end
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subprocedurelteration W, Z, k)
begin
k=k+1
for i :==1tondo
for j :=1tondo
if (W>zk + (W)kj < (W)Z] then
(W)ij = (W)ix + (W),
(Z)ij == (L)
fi
od
od
end

5.6 The Lightest Spanning Tree: Kruskal's and Prim’s Algo-
rithms

Problem. We have to find the spanning tree with the lowest weight of aexiad graph if the
edges of the graph have been weighted arbitrarily and thghieif a tree is the sum of all the
weights of the branches.

Obviously, we can assume that the graph= (V, E) is nontrivial and simple. Otherwise, we
simply remove the loops and choose the edge with the lowaghiveut of the parallel edges.
We denote the weight of the edgeas a(e) and the weight of the spanning tréeas~(T).
As usual, we write the number of verticesrgsnumber of edges as, V' = {vy,...,v,} and
E={ey,...,en}

Thedistancebetween two spanning tre&s and7; of G is

n—1—#(T1NTy) =ger. d(T1, Tn),

where#(171NT53) is the number of edges in the intersectiofpandT,. Obviouslyd(T,T;) =
Oifand only if 77 = T5. If d(T1,Tz) = 1, thenT; andT; areneighboring trees

The spanning tre& of G is cut minimalif the weights of the edges of the fundamental
cut set determined by the branklare> «(b) for every branchh. Similarly, the spanning tree
T is circuit minimal if the edges of the fundamental circuits atea(c) for every link ¢ in
the cospanning tre@*. The spanning tre& is locally minimalif (7)) < ~(71") for every
neighboring tred” of T'.

Lemma. The following three conditions are equivalent for the spagriree":
() T is cut minimal.
(i) T is circuit minimal.
(i) T is locally minimal.

Proof. (i)=-(ii): Let us assum@” is cut minimal and let us consider a fundamental cir€uaf
G corresponding to the link of the cospanning tre€*. Other tharc, the branches id' are
branches off". Every such branch defines a fundamental cut set’6f which also contains
(Theorem 2.7). Hence(b) < a(c).

(if)=(iii): Let us assume thdf is circuit minimal and let us consider a neighboring trée
of T. T" has (exactly one) braneh which is not inT', i.e. ¢’ is a link of T*. We examine the
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fundamental circuit” defined bye’. Not all edges of”' are in7’. We choose an edgein C
that is not in7”. Then,e is a branch ofl” (actually the only branch df that is not in7”). Now,
we removee out of 7" and adde’ to T'. The result has to b&’. Because of circuit minimality,
a(e') > ale), ie.y(T') > 4(T).

(i) =(i): We consider the locally minimal spanning trée We take an arbitrary branch
b from T corresponding to a fundamental cut $eand an arbitrary link: # bin I. Then,b
belongs to the fundamental circuit fdefined byc (Theorem 2.8). By removing the branch
b from T" and adding the edgeto 7', we get the neighboring tréE’ of T'. Because of local
minimality, v(T') < v(T7), i.e.a(c) > a(b). O

The spanning tre@ is minimalif it has the lowest possible weight.
Theorem 5.2. The following three conditions are equivalent for the spagrree™
() T is cut minimal.
(i) T is circuit minimal.
(i) T is minimal.

Proof. By the lemma above, (i) and (ii) are equivalent. A minimalrapag tree is obviously
locally minimal. Thus, it suffices to prove that a cut mininsglanning tree is also minimal.
We will prove by contradiction and consider the counter higpsis There is a cut minimal
spanning tred” which is not minimal. Let us consider the minimal spannirgi” and choose
T andT” so that the distanc& 7', 7”) is as small as possible. By the lemm&l’, 7") > 1.

T has a branch which is not in7”, i.e. it is a link of (7")*. We label the fundamental
cut set of 7" defined bye as/ and the fundamental circuit & defined bye asC'. In the
intersection/ N C, there are also other edges besieéBheorem 2.6). We choose such an edge
¢’. Then,¢e is a link of 7 and a branch of”. SinceT is cut minimal,a(e’) > «(e). Since
T’ is (circuit) minimal,a(e’) < a(e). Thereforea(e’) = a(e). By removinge’ from 7" and
addinge to 7", we get a minimal spanning trde¢’ which has the same weight @5 However,
AT, T") < d(T,T"). / O

In Kruskal’s Algorithm the edges of the gragh (and their weights) are listed as, . . ., e,,,.
The algorithm constructs a circuit minimal spanning tregbing through the list to take some
edges to form the tree. This is especially effective if thgesdare sorted in ascending order by
weight.

In thedual form of Kruskal's Algorithmwe construct a cut minimal spanning tree by going
through the list of edges to take some edges to form the casgatree. Once again, this is
especially effective if the edges are sorted in descenditgrdyy weight.

In all, we get four different versions of Kruskal’s Algorith (We have to remember that the
subgraph induced by the edge geis written as(A).)

Kruskal’'s Algorithm No. 1
Here we assume that the edges are givaastending ordeby weight.

1. Setk « 1 andA « (.

2. If e, does not form a circuit with the edges iy then setd < A U {e;} as well as
k + k + 1 and go to step #4.

3. If ¢, forms a circuit with the edges iA, then set: < £ + 1 and go to step #4.



CHAPTER 5. GRAPH ALGORITHMS 68

4. 1If (V, A) is not a tree, then go to step #2. Otherwise stop and outpigpaening tree
T = (A).

Whenever we leave out an edge frofr(step #3), its end vertices are already connectedl.in
Thus, the vertices off are connected ifi’ as they are irG. SinceT is obviously circuitless
(step #3), it is also a spanning tree@f At each stage, the branches of the fundamental circuit
defined by the link belonging t6* (step #3) are predecessors of that link in the list. Heffce,

is circuit minimal and thus minimal.

Remark. In every step, the branches and links are permanent. We dbawa to know the
edges beforehand as long as we process them one by one irdaggerder. The rank of the
graph (number of branches in a spanning tree) is then regudeforehand so we know when to
stop.

Kruskal’s Algorithm No. 2

Here we assume the edges are given iaduitrary order.
1. Setk + 1andA < 0.

2. If (AU {ex}) contains no circuits, then sdt < A U {e;} as well ask < k£ + 1 and go
to step #4.

3. If (Au{ex}) contains a circuit’, then choose the edge with the largest weigint C' (if
there are more than one, take any),4et- (AU {e,}) — {e} as well ast +— k + 1 and
go to step #4.

4. If k < m, then go to step #2. Otherwise, stop and output the span@ed't= (A).

Whenever we leave out an edge frotr(step #3), its end vertices are already connected.in
Thus, the vertices off are connected ifi’ as they are irG. SinceT' is obviously circuitless
(step #3), it is a spanning tree Gf

We see thatl" is circuit minimal (and minimal) by the following logic. Dung the whole
process{A) is a forest by step #4. In addition,«4fandw are connected ifA) at some point,
then they are also connected afterwards. #he path in(A) is unique but it can change to
another path later in step #3. Nevertheless, whenever laisge occurs, the maximum value
of the weights of the edges of the path can not increase amynimery linkc of 7 has been
removed fromA in step #3. Then, the weight ofis at least as large as the weights of the other
edges inC', After we have gone through step #3, the only connected eriite® ofc in (A)
have to go through the remaining edge<bfThe final connection between the end vertices of
c in T goes through the edges of the fundamental circuit defined Gyerefore, the weights
of the edges of this fundamental circuit atex(c).

Remark. In each step, the links: (in step #3) are permanent and the branches are not. We do
not have to know the edges beforehand as long as we processtiee by one. However, we
need to know the nullity of the graph (number of links in a emspng tree) so that we know
when to stop. The algorithm can also be used to update a misjpaaning tree if we add edges

to the graph or decrease their weight.
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Kruskal’'s Algorithm No. 3

Here we assume the edges are givedeacending ordeloy weight.
1. SetA + F andk « 1.

2. If (V; A — {ex}) is connected, then set < A — {e,} as well ask + k£ + 1 and go to
step #4.

3. If (V; A —{ex}) is disconnected, then ske— k + 1 and go to step #4.

4. 1If (V, A) is not a tree, then we go to step #2. Otherwise we stop and wiligpgpanning
treeT = (V, A).

T is obviously connected becaugé A) is connected everytime we go to step #4. On the other
hand,T is circuitless because if the circuit is in 7" and the edge is in the circuit, therc is
removed fromA in step #2 whemr, = ¢ (v/ ). Thus,T is a spanning tree @f. In each step, the
links of the fundamental cut set defined by the branch betantgi7” (step #3) are predecessors
of that branch in the list. Henc&, is cut minimal and it is thus minimal.

Remark. In each step, the branches and links are permanent. We hakeow the edges
beforehand. On the other hand, we do not have to know theghieas long as we get them
one by one in descending order.

Kruskal’s Algorithm No. 4

Here we assume the edges are given iarduitrary order.
1. SetA + F andk « 1.

2. If (V. A — {e}) is connected, then set < A — {e,} as well ask < k£ + 1 and go to
step #4.

3. If (V, A — {ex}) is disconnected, then it has two components. The correspprdrtex
sets form a cutV;, 5). We interpret it as an edge set and choose the edgith the
lowest weight in(V;, V4) (if there are more than one, take any). 8et- (A—{ex})U{e}
as well ask + k + 1 and go to step #4.

4. If k < m, then go to step #2. Otherwise stop and output the spanr@ad’t= (V, A).

T is obviously connected becauSeé A) is connected everytime we go to step #4. (Take note
that the connectivity is preserved everytime we go througp #3.) On the other hand; is
circuitless. If a circuitC' of G ends up inl" andc is the edge of”', which is first in the list,
thenc must be removed from in step #2 wher, = c. (Note that the edge removed from the
circuit first can not be removed in step #3.)clEomes back later (in step #3), then it forms a
cut set of(V, A) by itself in which case some other edgeldohas been removed. By continuing
this process, we see that all the edge¢’afan not be inA in the end {/). ThereforeT is a
spanning tree of.

In addition, 7" is cut minimal and minimal because every bramabf 7" comes in in step
#3. The links of the fundamental cut set definedlayre either edges of the c(it;, V2) which
is examined at that point or they are links of the cuts we eranthiater in step #3. Whenever
an edge of this kind gets removed later in step #3, it is alveayspensated by edges that are
heavier in weight thah. Those heavier edges are in the ¢ut, 12) which is examined at that
time. Therefore, the weights of the fundamental cut set ddfbyyb are> a(b).
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Remark. In each step, the branches in step #3) are permanent and the links are not. We
have to know the edges beforehand. We do not have to know igiigtsveeforehand as long as
we process them one by one. This algorithm can also be usegdating a minimal spanning
tree if we remove edges from a graph or if we increase the weimfredges.

Prim’s Algorithm

In Prim’s Algorithm(also known aslarnik’s Algorithn), we use the all-vertex incidence ma-
trix of G. If we label the set of edges incident on vertexs 2(v), then we can get a list
Q(vy),...,92v,), i.e. the cuts defined by the vertices (interpreted as edge e addition, we
assign weights to the vertices.

The algorithm works in the same way as Dijkstra’s Algorithyndonstructing the spanning
tree branch by branch. The variables dréset of branches of the spanning tree we have at the
time), B (set of vertices of the spanning tree we have at the time)/gtite cut interpreted as
an edge set from which we choose the next branch).

Prim’s Algorithm (First Version):
1. Choose a starting vertexand setd < ), B < {r} as well asl < Q(r).

2. Choose the lightest edgdrom I (if there are more than one, choose any). Take the end
vertexov of e that is not inB. SetA <— AU {e}, B+ BU{v}aswellasl < I ® Q(v)
and go to step #3. (Remember thatlenotes the symmetric difference operation between
two sets, see page 12.)

3. If B # V, then go to step #2. Otherwise, stop and output the span@e@t= (B, A) =
(A).

Since the edge was chosen from a cuf] is circuitless. On the other hand, because there is
a path fromr to every other vertexX]” has every vertex ofs and it is connected?” is thus a
spanning tree. It is also minimal because

Statement. During the whole proces$B, A) is a subtree of some minimal spanning tre&:of

Proof. We use induction o#, the number of vertices if.

Induction Basis/ = 1. The case is obvious becaude, A) is trivial.

Induction HypothesisThe statement is true fdr=k — 1. (k > 2)

Induction StatemenfThe statement is true fér= k.

Induction Statement Proofin step #2, we can writel = A’ U {e}, wheree € I’ and
B = B"uU{v}. (B, A’) is a subtree of some minimal spanning ti&g, from the induction
hypothesis. It belongs tdl,.;,,, then the case is clear. Otherwise, there is a fundamentalifci
C'in T + e and there is another edgeof I’ in C' (Theorem 2.6). Thery(e') > a(e) and
(Twin + €) — €' is also a minimal spanning tree agf, A) is its subtree (becaudg,;, is circuit
minimal anda(e’) < a(e)). O

Often, we use one or two additional labels for the verticemaiie Prim’s Algorithm easier.
In the next version of the algorithm, we will use two labels) and 3(v), which are used to
perform step #2 more effectively. The valuesmdre weights (up tec) and the values of are
edges (o 0). Otherwise, the algorithms works in the same way as before.
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Prim’s Algorithm (Second Version):

1. Choose a starting vertexand setr(r) < 0. For every other vertex, setr(v) + oc.
For every vertex, setf(v) «+ 0 as well asA < () andB «+ (.

2. Choose a vertex ¢ B for which

7(u) = min{m(v)}.

v¢ B
SetB «+ BU{u}. If f(u) # 0, thensetd «+— AU {S(u)}.

3. Go through all the edges= (u,v) wherev ¢ B. If a(e) < 7(v), then setr(v) « «(e)
andg(v) « e.

4. If B # V, then go to step #2. Otherwise, stop and output the span@e@t= (B, A) =
(4).

5.7 The Lightest Hamiltonian Circuit (Travelling Salesman's
Problem): The Annealing Algorithm and the Karp—Held
Heuristics

Problem. If it is possible, we are to find thElamiltonian circuitwith the lowest weight. A
Hamiltonian circuit visits all the vertices of a graph. Asuad, the weights of the edges have
been assigned and the weight of a (directed) circuit is tha sd the weights of the edges
traversed.

Obviously, we can assume that the graph is nontrivial, cot@ae(otherwise it would not be
possible to get a Hamiltonian circuit) and simple. If nogrihwe simply remove all the loops
and choose the edge with the lowest weight out of the pardigés. As usual, we denoteas
the number of verticesp as the number of edgeg, = {vy,...,v,} andE = {e1,...,en}.
We label the weight of an edge= (v;, v,) asa(e) = a(v;, v;) and the weight of a Hamiltonian
circuit H asy(H ). We agree that the "first” vertex of a Hamiltonian circuibis

The same problem exists for directed graphs in which case@making for the directed
Hamiltonian circuit with the lowest weight (known as tbesymmetric Travelling Salesman’s
Problen).

The Travelling Salesman’s Problem (TSR an/\P-complete problem, read e.g. BVAL-
HORN for more information. Actually, even deciding the existeraf a Hamiltonian circuit is
an N P-complete problem. Solving a small TSP takes a lot of timelargkr problems take so
much time that it is almost impossible to obtain accuratatsmts. Therefore, many stochastic
and approximation methods are used in practice. Then, we toagccept the possibility of
inaccurate outcomes or even the lack of results.

1The name "Travelling Salesman’s Problem” comes from arrjmégation where the vertices of a graph are
cities and the weights of the edges between the cities arellirey times. The salesman needs to visit every city
in the shortest amount of time.
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The Annealing Algorithm

Theannealing algorithm®sr thermodynamic algorithmisave the following common features:

(A) The system in question is always in somstates. The set of all state$' is finite and
known. In the TSP, a state is a Hamiltonian circuit.

(B) Each states has aresponsef(s), which can be calculated in a timely fashion from the
state. Our goal is to find a state whose response is near theamimaximum value.
The response of a state of a TSP is the weight of a Hamiltonianit

(C) There is a proceduré; which is used to move from stateo stated,(s). k is a parameter
of the procedure which belongs to the $ét K can change during the procedure. The
purpose is to move to certain states "near” the stathich are defined by the parameter
k. By repeating the procedure with proper valueg pive should be able to move from
any state to any other state. (In some cases, we can omiaghigdrt.)

(D) Every time we move from one state to another, we shouldoteta choose the param-
eter £ quickly and randomly from/i. In particular, the sefS itself should be easily
computable.

(E) We should be able to quickly perform the proceddfegiven a value of:.

(F) We should be able to find a starting stajeFor the TSP, the starting state is a Hamiltonian
circuit.

The algorithm is as follows:

The Annealing Algorithm:

1. Choose the starting statg theinitial temperaturel}, and sets <+ sq as well asl" + Tj.

2. When we are in the state we randomly choose a parametee K and compute’ =
Ak(s)

3. If f(s') < f(s), then set < s’ and go to step #5.

4. If f(s') > f(s), then generate a random numben the intervall0, 1). If r < e
then sets < s’. Thus, we accept a "worse” state with probabilsifﬁ)?&. Note that the

greater the temperatuf@ the greater the probability that we go "uphill”.

5. If we have gone through a maximum total number of iteratjohen we stop and output

s. Otherwise, if we have gone through sufficiently many iters of the procedure using
temperaturd’, then we lowefl’ by some rule and go to step #2.

Remark. The distribution of the probability,, = I used in step #4 is (apart from

normalizing) a so-callednaximum entropy distributiomvith the following condition on the

expected value:
Z ps’f(sl) =K

s'=Ag(s)
keK
f(s")>f(s)
wherep depends of1” ands. The distribution is also called Boltzman distributiorand it is
analogous to the distribution of the same name in StatisMmchanics. Refer to courses in

Physics and Information Theory for more information.
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At first, we wait until the fluctuation in the states settlestoertain equilibrium (using the
responsef(s)). After that, we lower the value 6f a bit and wait again for the equilibrium.
Then, we lower]" again and so on. We continue this until the change in value§ of is
sufficiently small or if we have ran out of time.

The operatiord,, and the sek of the neighboring states depend on the problem. The state
structure and the response function also depend on thegpnolitor the TSP, we still need to
assignA, and K for every situation. For this purpose, we take another patam and set
j < 2. In step #2, we updatgin the following way:

4 j+1lifj<n
J < .
2 otherwise.
(Another way of choosing in step #2 would be to choose it randomly out{a@f ..., n}.)
Furthermore, we choose

K={2,...,n} —{j}.
Ay is defined by the following operation (known as tegersa):

o If & > j, then we reverse the order of the vertiags ..., v; on the corresponding
subpath in the current Hamiltonian circuit

S UL, Vigy e v vy Uy, , V1.

o If & < j, then we reverse the order of the vertiags ..., v;; on the corresponding
subpath in the current Hamiltonian circuit

S 1V, Vigy e v vy Vi, , V1.

We add the missing edges to the graph with very large weighthat we get a complete
graph and we will not have to worry about the existence of a iHaman circuit in the first
place. If we still do not get a Hamiltonian circuit in the endtiwout those added edges, then
there is not a Hamiltonian circuit.

The starting temperatufg, should be much larger than the valueg pfs’) — f(s)| which
guarantees that we can in principle move to any state ("dimgpin the earlier stages of the
algorithm. After that, we lower the temperature applyingeaule, for example a 10% change.

The annealing algorithm also works for the unsymmetric T&R wbvious changes.

Karp—Held Heuristics

In the Karp—Held Heuristicswe do not directly look for a Hamiltonian circuit but lookrfa
similar subgraph, known asspanning 1-tre& The process does not work for the unsymmetric
TSP. The spanning 1-treé® corresponding to the vertex(known as theeference vertexs a
subgraph of that satisfies the following conditions:

(@) S, is connected and contains every vertex:of
(b) S, contains exactly one circuit' and the vertex belongs taC'

(c) S, has exactly two edges incident on

2Not to be confused with the 1-tree on p. 23!
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Clearly, a Hamiltonian circuit is a spanning 1-tree cormgpng to any of the vertices. The
weightof the spanning 1-tre8, is the sum of of the weights of all its edges, denoiéf,). S,
is minimalif it has the lowest possible weight.

Statement. S, is minimal if and only if
(i) S, — v is a minimal spanning tree @f — v, and

(i) the two edges of, incident onv are the two lightest edges 6f out of all the edges
incident onv.

Proof. Let S, be a minimal spanning 1-tree. Letand¢’ be the two edges iy, incident on
v. Then,S, — v is a spanning tree aff — v because removing destroys the circuit but the
connections remain unsevered.Slf — v is not a minimal spanning tree 6f — v then there is
a lighter spanning tre€ of G — v. By adding the vertex and the edgesande’ to 7', we get a
spanning 1-tree corresponding to vertewhich is lighter thanS, (/). Therefore, (i) is true.
Obviously, (ii) is true (because otherwise we would get htkg spanning 1-tree by replaciag
ande’ with the two lightest edges i¥ incident orw).

Let us assume that (i) and (ii) are true.Slf is not minimal, then there is a lighter minimal
spanning 1-tre&. corresponding te. Because5, also satisfies (ii), the two edges incident on
v are the same (or at least they have the same weight)amdS!. Thus,S! — v is lighter than

Sv_v(\/)- |

It follows from the statement that any algorithm that finde thinimum spanning tree also
works for finding the minimum spanning 1-tree with minor nfaditions. Especially, Kruskal’s
and Prim’s Algorithms are applicable.

In the Karp—Held Heuristics, we also use weights of vertidesioteds(v). With these, we
can define theirtual weightof an edge as

o (v, v5) = a(vi, v) + B(vi) + B(v;).

With the concept of virtual weights, we get the virtual weaigha spanning 1-tre§,, (we label
the edge set of, asA):

Y(S,) = Z o (v, v5) = Z a(vi,v;) + Z (vi) + B(vj))

(Uz’ vj)EA (vi Uj)EA (vl UJ)GA

+Z Uz+6v])

(vi,vj)EA
Now we denote the degree of the vertein S, asdg, (u). Then,
Z(B(UZ +6Uj Zﬁvz dSU Uz
(vivj)€A

and

Y (S) = 7(S) + > Blvi)ds, (vy).

In particular, if we have a Hamiltonian circulf (a special spanning 1-tree), then

dH(Ul) == dH(Un) =2
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and

V(H) = 2(H) + 23 (v

Does not depend oH'!

Minimization of the Hamiltonian circuits using virtual wghits yields the same minimal circuit
than obtained by using real weights. In general though, it virtual weights to search for
spanning 1-trees, then we get results different from tharspg 1-trees obtained by using real
weights.

From now on, we only consider the spanning 1-tree correspgnd vertexv; and we leave
out the subscript. This is not a limitation of any kind on thaniltonian circuits although it
might be a good idea to change the reference vertex every ndwhan. We assume that,;,
is a minimal Hamiltonian circuit and’ is the minimal spanning 1-tree obtained from using
virtual weights (which of course correspond2:{9. Then,

’V/(Hmin) > ’V/(S/>-

In addition, .
v (Hmin) = ¥(Hmin) + 2 Z B(v;)
and . -
7(8) =7(8") + 3 Blui)ds (v3).
Thus, -

Y(Hmin) = 7' (Huin) — 2 ZB(%) >'(S') - 2Zﬁ(7}1>

=~(5") + Z Blvi)(ds(vi) — 2),

i=1

from which we get dower limiton v (Hy,)-

The idea of the Karp—Held Heuristics is to guide the degrédsovertices inS’ to the value
2 by changing the weights of the vertices. If we succeed, themg@t a minimal Hamiltonian
circuit. In all cases, we get a lower limit on the weightd?) of the (possible) Hamiltonian
circuits by using the calculation above. (Note tHat(v, ) is always= 2 if S’ is the spanning
1-tree corresponding tg.)

The Karp—Held Heuristics:
1. Setf(v) < 0 for every vertex.
2. Setd/(u,v) + a(u,v) + B(u) + B(v) for each edgéu, v).

3. Find the minimal spanning 1-tré8 using virtual weights\'(u, v). If we fail to find this
kind of spanning 1-tree, then there is no Hamiltonian ctrand we can stop.

4. If S" is a circuit, then output the minimal Hamiltonian circédt= S’ and stop.

5. If S’ is not a circuit and the lower limit calculated froffi increased during the lagt
iterations, then set(v) « B(v) + dg (v) — 2 for every vertexo and go to step #2 K is
a fixed upper bound on the number of iterations.)
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6. If the lower limit calculated front” has not increased during the Idstiterations, then
output that lower limit and stop.

This procedure does not always produce a minimal Hamiltoaigcuit even if there exists
one. In practice, it often produces either a minimal Hamilo circuit or a good lower limit on
the weight of it. Getting a number for the lower limit does,Haiwever, guarantee the existence
of a Hamiltonian circuit in the graph!

Karp—Held Heuristics has many steps where we have to chaseen different options
(such as the reference vertex and the spanning 1-tree). Meot@o through every possibility
so we must choose randomly. Then, we have a Las Vegas algaritstochastic algorithm.

5.8 Maximum Matching in Bipartite Graphs: The Hungar-
ian Algorithm

A matchingin the graphG = (V, E) is a set of edgeS C E none of which are adjacent to each
other. A matching is anaximum matching it has the greatest possible number of edges. The
end vertex of an edge in a matchingistched

Problem. We want to find the maximum matching in a bipartite graph.
An alternating pathof a matchingS is a path that satisfies the following conditions:

(1) The first vertex on the path is not matched, and

(2) every second edge is in the matching and the remainingseal@ not in the matching.

Note that the first edge in an alternating path is not in thehiag. In addition, if the last vertex
of an alternating path is not matched, then this path iawgmenting pattof S. A matching
without augmenting paths is calledreaximal matching

Example. For the bipartite graph

W. oW
Vl 1 Vl 1
Wo Wo
vV Vo ®
2 2 W
. W3 . 3
G V3 S v

\Y} V
4 W, 4 W,
5 5
Vs Vs
Wg Wg

one augmenting path of the matchifg= {(vy, ws), (vs, wa), (v4, ws), (vs,ws)} is the path
where the vertices are,, ws, v3, wg, vy, W1.

V@
1 W2
V.
2
.W3
V.
3
.W4
\Y)
4
.W5
V5 o
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We canaugmenf matchingS using its augmenting pathas follows:
1. We remove the edges §fin p, and
2. We add the edges jwhich are not inS.

The new edge set is obviously a matching. Note that the nuofleeiges inS on an augmenting
path is one fewer than the number of the remaining edges.efdrer the number of edges in
a matching increases by one after the augmenting operalios.not possible to augment a
maximal matching.

Example. (Continuing from the previous example) By using the givegnanting path from
the matchingS, we get a new maximal matchirfy = {(vy, ws), (va, w2), (v3, ws), (v4, w1),

(vs,ws) }.

W.
vy 1
Wo
Vo
W3
V3
ow,
v
4
Wg
Vg5
We

In the Hungarian Algorithm we systematically search for augmenting paths until we get
a maximal matching. After that, it suffices to prove that a mmt matching is a maximum
matching. From now on, we only consida@partite graphsbecause the algorithm is then much
simpler. We search for augmenting paths by constructingli@nnating treeof a matchings
which is a subtree aff such that

(1) avertex- (theroot of the tree) is unmatched,

(2) every second edge on each path out froisin S and the remaining edges are notin
and

(3) either there is an augmenting path out frer we can not add any more edgesSto

An alternating tree is aaugmenting tred it has an augmenting path. Otherwise, it islan-
garian tree Every augmenting path is obviously an augmenting tree $sifit Note that the
only unmatched vertex of a Hungarian tree is the root.

Example. (Continuing from the previous example) Two alternatingsref the matching are
(the root is circled):

W1
W
2 W,
Y;
3 V3
v W Wy
4 Vs
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Both of them are augmenting trees. An alternating tree oftatchings; (the root isw,) is the
Hungarian tree

W.
1
Vi
W3
w
4
Va

Augmenting and Hungarian trees are not unique. We can hang different trees depend-
ing on the order we take the edges for constructing the treastbough the roots are the same.
On the other hand,

Statement. If a matching in a bipartite grapld: has a Hungarian tree, then it does not have an
augmenting tree with the same root.

Proof. Let us prove by contradiction and consider the counter thgs$ A matchingS has a
Hungarian tred/ and an augmenting trée with the same root. We get an augmenting path
in the augmenting tree

p:r="7vg,€1,01,€2,...,€EL, Vk.

We choose the last vertex which is inU from the pathp (at leastr = v, is in U). Since
v iIsnotinU, i < k. Furthermore, the edge,; is not in the matching nor i&/ (otherwise
v;+1 would also be in/). On the other hand, sineg,; is not inU, v;,; has to be an end
vertex of another edge iti (/) because the only reason why the edge is not put intolU
while constructing’ is that the other end vertex,, of ¢, is already inU. Note how the
bipartiteness of th& comes in: If the cut iz that results in the bipartition i§/, 13), then the
vertices ofU andp alternate betweeh; andV;. Therefore, the length of thew; path is even
inpandU. 0J

Constructing an alternating tree from a root always leadsHungarian tree or an augmenting
tree but not both. The order of the edges taken does not m@ttes is not the case for general
graphs.)

For the bipartite grapldr = (V, F), the Hungarian Algorithm is as follows. The cut that
yields the bipartition igV;, V3).

The Hungarian Algorithm:
1. SetS « (). (We can also use some other initial matching.)

2. If every vertex inV; or in V; is matched inS, thenS is a maximum matching and we
stop.

3. If there are unmatched verticesSrof V7, then go through them in some order construct-
ing alternating trees (the method of construction is notdrtgnt as we claimed). If there
is an augmenting tree, then augmenting the matcKibg using the augmenting path we
have another matching,. SetS «+ S; and go to #2.

4. If all the alternating trees that have unmatched veriité$ as roots are Hungariaf, is
maximal and we stop.
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Theorem 5.3. A maximal matching in a bipartite graph is a maximum matching

Proof. Let us prove by contradiction and consider the counter Hg®$ A maximal matching

S in the bipartite grapli = (V, F) is not a maximum matching. Then, there are more edges in
the maximum matching,,., than inS and inV; there are more vertices matcheddp., than

in S. We choose an arbitrary vertexe V;, which is matched irb,,,,, but not inS. Then, we
have a path

b v ="1,€1,V1,€,...,€Ek, U = W,

whose edges are alternating betwegn, andS, i.e.e; is in Sy, ande, is in S and so on.
We choose the longest such path Becausep is obviously an alternating path df, it has
even length, i.ee¢;, is an edge of. (Otherwisep would be an augmenting path Sfwhich is
impossible becausg is maximal.) Thusyw is matched inS but not matched ir%,,,., (because
the pathp can not be continued).

Hence, every vertex € V; which is matched irb,,., but not inS corresponds to a vertex
w € V4, which is matched ir6' but not inS,,.... Now, every path that ends at must start
from the vertex if the starting vertex is matched i),.., but not inS. The last edge of such a
path has to be;, (the only edge it incident onw) and the second to the last vertex has to be
vk_1. Furthermore, the second to the last edge of this path hasdo b(the only edge ob ..
incident onu,_) and the third to the last vertex has tode,, and so on.

However, there are then i, at least as many vertices that are matched i§ but not in
Smax @S there are verticesthat are matched i, but notinS (/). O

Corollary. The Hungarian algorithm produces a maximum matching in attife graph.

A matching isperfectif it matches every vertex of a graph. Thus, a graph with an odd
number of vertices can not have a perfect matching. Let usidenthe grapti- = (V, F) and
denotev(v) = {adjacent vertices af} as well as/(A) = |J,., v(v) for the vertex setl C V.

Let us denote by#(X) the number of elements in the s€t(the cardinality of the set). With
these notions, we can present the following famous charaaten:

Theorem 5.4. (Hall's Theorem or "Marriage Theorem”) A bipartite graphGG whose bipar-
tition cut is (14, V) has a perfect matching if and only if every vertex4et V; and B C 15
satisfies the conditiong(A) < #(v(A)) and#(B) < #(v(B)).

Proof. If a perfect matching exists, then obviousi(A) < #(v(A)) and#(B) < #(v(B))
hold for all sets of verticesl C V; andB C V5. (Otherwise, we can not find a pair for every
vertex inA or B in the matching.)

Let us assume that for all sets of verticésC V; and B C V,, #(A) < #(v(A)) and
#(B) < #(v(B)). LetS be a maximum matching i. We will prove by contradiction
and consider the counter hypothesis is not perfect. We choose a vertexwhich is not
matched inS. Let us examine the case where V; (the other case wherec V; is obviously
symmetrical). The contradiction is apparent if an isolated vertex so we can move to the case
wherev is an end vertex of an edge. The alternating tree with thera®then nontrivial and
since the matching is also maximal, this tree is Hungariam cdose such a Hungarian tiée
We label the set of vertices &f (resp.V:) in U by A (resp. byB). Because of the construction
of U, B = v(A). On the other hand, the vertices.4fand B in U are pairwise matched by the
edges of5, except for the root. Hence #(A) = #(B) + 1 > #(B) (v/)- O
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5.9 Maximum Flow in a Transport Network: The Ford—Ful-
kerson Algorithm

A transport networkis a directed grapliy = (V, E) with weighted arcs that satisfies the fol-
lowing:

(1) G is connected and loopless,
(2) G has only one source
(3) G has only one sink, and

(4) the weightc(e) of the arce is called thecapacityand it is a nonnegative real number, i.e.
we have a mapping: £ — R,.

(Compare to stationary linear networks in Section 4.4.)ually, we could assume thét has
every possible arc except loops and it can even have muttgsldlel arcs. If this is not the case,
then we simply add the missing arcs with capacity zero. Ndliywe can also assume that
is nontrivial.

A flow f of a transport network is a weight mappiag— R, which satisfies:

(i) For each are, we have theapacity constrainff(e) < ¢(e), and

(i) each vertexv # s,t satisfies theconservation conditiorfalso calledKirchhoff’s Flow

Law, compare to Section 4.4)
ST e = fle).

initial vertex  terminal vertex
ofeisv ofeisv

f(e) is called theflow of e. The flow of the ardu, v) is also denoted ag(u, v). Thevalueof

the flow f is
1=) fle).
initial vertex
ofeiss
A flow f*is amaximum flowf its value is the largest possible, ijg*| > |f| for every other
flow f.

An s—t cutof a transport networl§ is a (directed) cuf = (V;, V4) such thats is in V; and
tisin V5. Thecapacityof such a cut is

c(l) = Z c(u,v).

ueWVq
vEVy

(Note that the arcs in the direction opposite to the cut daffett the capacity.) The capacity of
the cut(V;, V,) is also denoted agV;, V»). Furthermore, we define thleix of the cut/ = (V/,
V,) as

and thecounter-fluxas

The value of a flow can now be obtained from the fluxes of a#ycut:
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Theorem 5.5.1f f is a flow of a transport network anklis ans—t cut, then
[fl=fT) = (D).
Proof. Obviously,

_JIflifu=s
Zf(e)_zf(e>_{0ifv7és,t.

initial vertex  terminal vertex
ofeisv ofeisv

We denotel = (14, V3). By going through the verticesin V; and by adding up the equations

we get
Yoo e = > fle=1l
veV] initial vertex v€eV] terminal vertex
ofelsv Oofelsv

For each are whose end vertices are bothif, f(e) and— f(e) are added exactly once and
thus they cancel out. Therefore,

Corollary. If fis a flow of a transport network andis ans—t cut, then|f| < ¢(I).
Proof. [ f[ = /(1) — f~(I) < fT(I) < (). H

An arce of a transport network isaturatedif f(e) = c(e). Otherwise, it isunsaturated
Now, we point out thatf| = ¢(V1, V») if and only if

(i) the arc(u,v) is saturated wheneverc V; andv € V;, and
(i) f(u,v) = 0whenevern € V, andv € V;.

An s—t cut I* of a transport network is calledrainimum cuif ¢(/*) < ¢(I) for every other
s—t cutl.

Corollary. If f is a flow of a transport network] is an s—¢ cut and|f| = ¢(I), thenf is a
maximum flow and is a minimum cut.

Proof. If f*is a maximum flow and™* is a minimum cut, thenf*| < ¢(/*) by the corollary
above. Thus,
fI< 1< el?) < e(])

andf is indeed a maximum flow anflis indeed a minimum cut. O

Actually, the value of the maximum flow is the capacity of thmimum cut. The show this, we
examine a path from vertexto vertexv (not necessarily a directed path):

S = v, e1,V1,€E,...,6, 0, =0 (pathp).

If e, = (v;i_1,v;), then the are; is aforward arc If e; = (v;,v;_1), then the are; is aback arc
The arce; of p is now weighted by the following formula:

(e c(e;) — f(e;) if e; is a forward arc
€\e;) = . .
f(e;) if e; is aback arc
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and the path is weighted by the following formula:

“(p) = min{e(e.)}.

1=

The pathp is unsaturatedf ¢(p) > 0, i.e. all of the forward arcs op are unsaturated and
f(e;) > 0 for all the back arcs; of p.

In particular, ans— path can be unsaturated in which case it is calledwmmenting path
All of these definitions are of course attached to a certaim flo By starting from ars—t path
p (and a flowf), we can define a new flow:

f(e) + €(p) if e is a forward arc op
f= f(e) — €(p) if eis a back arc op
f(e) otherwise.

[ is really a flow. Changes irf can only occur at the arcs and verticespof Every arc of
p satisfies the capacity constraint because of bh@w and f(e) are defined. A vertex; of p
satisfies the conservation condition which we can verify.nAlee four cases:

Obviously (think about the sourcg
1= [f] +€p),

so f is not a maximum flow if it has an augmenting path. Moreoverabnverse is true as well.
Hence,

Theorem 5.6. A flow is a maximum flow if and only if it does not have any augimgpiath.

Proof. As we claimed, a maximum flow can not have an augmenting pahus assume that
a flow f does not have an augmenting path. We denote the set of gewtgeh we can reach
from the sources along unsaturated paths by. Then, trivially,s € V; andt ¢ V; (because
there are no augmenting paths). Thus, thelcat (V7, V5) is ans—t cut. We proceed to prove
that|f| = ¢(I). By the previous corollaryf is then a maximum flow.

Let us consider the ara:, v), whereu € V; andv € V;. Then, there exists an unsaturated
s—u pathp. The edggu, v) is saturated because there would be an unsatusategath oth-
erwise. Similarly, we conclude that(u,v) = 0 for every arc(u,v), whereu € V, and
v € Vi. Therefore, the fluxf*(I) is ¢(I) and the counter-fluf—(7) is zero. By Theorem
55,|f| =c(I). O

3Not to be confused with the augmenting path in the previoossd
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We have also proven the celebrated

Theorem 5.7. (Max-Flow Min-Cut Theorem) The value of a maximum flow in a transport
network is the same as the capacity of a minimum cut.

If the capacities of the arcs are rational numbers, then amrman flow can be found by
using Theorem 5.6. The algorithm tries to find an augmentaty for /. If it can not be found,
then we have a maximum flow. If we find an augmenting path, thense it to create a greater
flow f. In the algorithm, we use a labelfor the vertices in the following way:

a(v) = (u,direction A),

wherew is a vertex in the transport network (er if it is not defined), "direction” is either
forward (—) or back ¢) (or — if it is not defined) andA is a nonnegative real number (or
o0). The point is, whenever a vertexis labeled, there is ag—v pathp which contains the
("directed”) arc(u,v) andA = ¢(p). A direction is forward if an arc is in the direction of the
path and back otherwise. We can label a vert@hen the vertex: has been labeled and either
(u,v) or (v, u) is an arc. We have two cases:

(1) (Forward Labe) If e = (u,v) is an arc andv(u) = (-, -, A,) as well as:(e) > f(e), then
we can writex(v) = (u, —, A,), where

A, = min{A,, c(e) — f(e)}.

(2) (Back Labe) If e = (v,u) is an arc andv(u) = (-,-,A,) as well asf(e) > 0, then we
can writea(v) = (u, +, A,), where

A, = min{A,, f(e)}.

There are two phases in the algorithm. In the first phase, laed the vertices as presented
above and each vertex is labeled at most once. The phase aedshe sink gets labeled as
a(t) = (-, —, ), or when we can not label any more vertices. In the second tteeye are no
augmenting paths and the flow we obtain is a maximum flow so ag $h the first case, the
flow we obtain is not a maximum flow and we have an augmentingpftdr whiche(p) = A,.
The algorithm moves on to the second phase. In the seconé,plasonstruct a new greater
flow f by using the labels of the vertices@bbtained previously. After this, we go back to the
first phase with this greater new flow.

The Ford—Fulkerson Algorithm:

1. Choose an initial flowf,. If we do not have a specific flow in mind, we may ysé:) = 0.
Label the source by a(s) < (—, —, ). Setf « fo.

2. If we have a unlabeled vertex which can be labeled either forward by, —, A,) or
backward by(w, <, A,), then we choose one such vertex and label it. (There can be
many ways of doing this and all of them are permitted.) If sactertexv does not exist,
output the maximum flow/ and stop.

3. If t has not been labeled, go to step #2. Otherwisey sett.
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4. If a(u) = (w,—,A,), then set
fw,u) < f(w,u) +A; and wu < w.
If a(u) = (w, <, A,), then set

flu,w) < f(u,w) — Ay and u <+ w.

5. If u = s, then remove all the labets but not the label of the source and go to step #2. If
u # s, then go to step #4.

If fo(e) andc(e) are rational numbers, then the algorithm stops and produges<imum flowt

In this case, we can assume that these weights and capacgi@®nnegative integers. Thus,
the value of a flow increases by a positive integer every timenave from the second phase to
the first phase and the value reaches a maximum eventuallthedsther hand, the number of
steps can be as large as the value of the maximum flow. Therpenfice time of the algorithm
does not only depend on the number of vertices but also trectags.

The algorithm can be modifiédo that it does not depend on the capacities. Thus, it will
work for irrational capacities. In this case, our purposgrduthe labeling phase is to find the
shortest augmenting path. We get this by always choosingdtiexv in step #2 in such a way
that ina(v) = (w, -, A,), w received its label as early as possible.

The Ford—-Fulkerson Algorithm also works for finding a maximmatching in a bipartite
graph. Let us do an example:

Example. Using the bipartite grapldz from an example in the previous section, we get a trans-
port networkG":

W1
Vv
1 W,
V.
2 A .
G vy W S t
Vg 4
W,
5
Vg "

Every edge of is directed from left to right and given a capacity of The initial flow is a
zero flow (or a greater flow we obtain from some other initiaMjoDuring the whole process,
the flows of the edges are integérsr 1. We take into the matching those edgesg-imhose
corresponding edgesin G’ receive a flowf(e) = 1 and a maximum flow gives a maximum
matching. Note that an augmenting path can be of length faifggn three in this case. (We
can also claim now that the augmenting paths here and the anting paths obtained from the
Hungarian Algorithm do have something in common after all!)

4If there are irrational capacities or flowfs(e), then the algorithm may not stop at all and it may not produce a
maximum flow even if the process repeats endlessly. Of coweseo not have to use irrational flows. In practice,
we will not use irrational capacities.

5This is known as thEdmonds—Karp Modificatiorefer e.g. to $/AMY & THULASIRAMAN).



Chapter 6
Drawing Graphs

6.1 Planarity and Planar Embedding

We have not treated graphs as geometric objects so far incilmses In practice, wdraw
graphs, i.e. we treat vertices as geometric points and emlgesntinuous curves. If a graph
G can be drawn on a plane (or a sphere) so that the edges onigectat vertices, then it is
planar. Such a drawing of a planar graph iplanar embeddingf the graph.

A connected part of a plane which does not contain any vertiod is surrounded by edges
is called aregionof a planar embedding. In addition, the part outside the eldiibg is consid-
ered as a region, known as texeterior region(when we draw a planar graph on a plane or on a
sphere, it is just like any other region). The vertices sumdbng a regiors are calledooundary
verticesand the edges surroundirgare calledboundary edgesTwo regions areadjacentif
they share a boundary edge. Note that a region can be adjadesslf.

Example. In the following planar embedding

the regions aresq, s», s3, s4 andss (the exterior region) and their boundary vertices and edges
as well as their adjacent regions are given in the table below

region boundary vertices boundary edges  adjacent regions

51 U1, Us, U2 €1, €10, €2 $2, S5

52 Vg, Us, U4, U3, Vg, U7 €2, €4, €7, €9, €3, € 81, 52, 83, S5
53 Vg, Us €4, €5 $2, S5

S4 Us €3 S5

S5 U1, Us, U4, U3, U2, U €10, €3, €5, €7, €5, €1 51,52, 53, 54

85



CHAPTER 6. DRAWING GRAPHS 86

In the following, we investigate some fundamental progsrtof planar embeddings of
graphs.

Theorem 6.1. (Euler's Polyhedron Formula) If a planar embedding of a connected gra@h
hasn vertices,n edges and regions, then

fHn=m+2.

Proof. Let us use induction om.

Induction Basis m = 0. Planar embedding af has only one vertex and one region (the
exterior region) so the claim is true.

Induction HypothesisThe theorem is true fan < /. (¢ > 0)

Induction StatemeniThe theorem is true fat, = ¢ + 1.

Induction Statement ProofWe choose an edgeof G and examine the grapil’ = G — e.
If e is in a circuit, then&” is connected and by the Induction Hypothesis, we get

ffAn=(m-—1)+2,

where f’ is the number of regions iG’. However, closing the circuit witla increases the
number of regions by one s = f — 1 and the theorem is true. & — e is disconnected,
then it has two planar components, andG, whose number of vertices, edges and regions are
ni,no, My, Mo, f1 and fs, respectively. By the Induction Hypothesis,

f1+n1:m1+2 and f2+n2:m2+2.

While addinge, the number of regions becomgés+ f, — 1 (G; andG, share the same exterior
region or one exterior region is drawn to be a region of thewotomponent), the number of
vertices becomes; + n, and the number of edges becomes+ m, + 1. Hence, the claim is
true. O

Example. (Continuing from the previous example) We remove the vegtexget a connected
planar embedding. Now, we haVevertices,10 edges) regions and + 7 = 10 + 2.

Theorem 6.2. (The Linear Bound)If a simple connected planar gragh hasn > 3 vertices
andm edges, then
m < 3n —6.

Proof. If the regions of a planar embedding@fares,, ..., s, then we denote the number of
boundary edges of, by r; (i = 1,..., f). The casef = 1 is obvious becaus€ is then a tree
andm =n — 1 < 3n — 6. Thus, we assume thgt> 2. SinceG is simple, every region has at

least3 boundary edges and thus
f

Z?”Z‘ Z 3f

=1
Every edge is a boundary edge of one or two regions in the peanbedding, so

/
Z Tr; S 2m.
i=1

The result now follows directly from Euler’s Polyhedron Fuarla. O

1The name comes from a polyhedron witlvertices;n edges,f faces and no holes.
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Theorem 6.3. (The Minimum Degree Bound)ror a simple planar grapltz, 6(G) < 5.

Proof. Let us prove by contradiction and consider the counter tgss$ G is a simple planar
graph andy(G) > 6. Then, (by Theorem 1.1 > 3n, wheren is the number of vertices and
m is the number of edges i@. (1/ Theorem 6.2) O

A characterization of planar graphs is obtained by exargiogrtain forbidden subgraphs.

Theorem 6.4. (Kuratowski's Theorem)A graph is planar if and only if none of its subgraphs
can be transformed t&’; or K 3 by contracting edges.

The proof is quite complicated (but elegant!), refer e.g.SteaMY & THULASIRAMAN for
more information.K; and K5 3 are not planar, which can be verified easily.

There are many fast but complicated algorithms for testilagarity and drawing planar
embeddings. For example, thpcroft—Tarjan Algorithmis one. We present a slower classi-
cal polynomial time algorithm, thBemoucron—Malgrange—Pertuiset Algorithifusually just
calledDemoucron’s Algorithin The idea of the algorithm is to try to draw a graph on a plane
piece by piece. If this fails, then the graph is not planar.

If G is a graph and? is a planar embedding of a planar subgrapbf G, then anR-piece
PofGis

e either an edge aff — S whose end vertices are # or

e a component of the subgraph induced by vertices nét which contains the edges (if
any) that connec$ to the component, known g&nding edgesand their end vertices.

Those vertices of ai-piece ofG that are end vertices of pending edges connecting them to
S are calledcontact vertices We say that a planar embeddifyof the planar subgraph is
planar extendabléo G if R can be extended to a planar embedding of the widby drawing
more vertices and/or edges. Such an extended embeddinded aalanar extensiorof R to

G. We say further that a®-piece P of (G is drawablein a regions of R if there is a planar
extension ofR to G where P is insides. Obviously all contact vertices aP must then be
boundary vertices of, but this is of course not sufficient to guarantee planamability of R

to G. Therefore we say that& is potentially drawablan s if its contact vertices are boundary
vertices ofs. In particular, a piece with no contact vertices is potdiyt@drawable in any region

of R.

Demoucron’s Algorithm:

1. We first check whether or nét is a forest. If it is a forest, then it clearly is planar and
can be planar embedded. (There are fast algorithms for tingope.) We can then stop.

2. If GG is not a forest then it must contain at least one circuit. Weosk a circuit’, embed
it to get the planar embedding, and setk < D. (A circuit is obviously planar and is
easily planar embedded.)

3. If Ris a planar embedding @f, then we output it and stop.

The original reference is ®PCROFT J.E. & TARJAN, R.E.: Efficient Planarity Testingournal of the ACM
21(1974), 549-568.

3The original reference is EMOUCRON, G. & MALGRANGE, Y. & PERTUISET, R.: Graphes planaires: recon-
naissance et construction des représentations planape®giquesRevue Frangaise Recherche Opérationnelle
8(1964), 33-47.
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4. We construct the sé® of all R-pieces ofGG. For each piecé € P we denote byS(P)
the set of all those regions &f which P is potentially drawable in.

5. If, for an R-pieceP € P, the setS(P) is empty ther7 is not planar. We can then output
this information and stop.

6. Choose ark-pieceP, starting from those potentially drawable only in one regio
7. Depending on the number of contact vertice$ofve planar extend:

7.1 If P has no contact vertices, we call Demoucron’s Algorithm reisely with input
P. If it turns out thatP is not planar, therG is not planar, and we output this
information and stop. Otherwise we exteRdo a planar embedding by drawing
P in one of its regions, s&t < U, and return to step #3.

7.2 If P has exactly one contact vertexwith the corresponding pendant edgewe
call Demoucron’s Algorithm recursively with inpu?. If it turns out thatP is not
planar, therGG is not planar, and we output this information and stop. Qs we
extendR to a planar embedding by drawingP in a region with boundary vertex
setR < U, and return to step #3. (This region Bfwill then be an exterior region
of the planar embedding d@?.)

7.3 If P has (at least) two contact verticesandw,, they are connected by a pathn
P. We then extend? to a planar embedding by drawingp in a region of R with
boundary vertices, andv, whereP is potentially drawable, s&t « U, and return
to step #3.

Clearly, if G is not planar, Demoucron’s Algorithm will output this infoation. On the
other hand, the algorithm will not get stuck without drawthg planar embedding if the input
is planar, because

Statement. If G is planar, then at each step of the algorithiris planar extendable t6:.

Proof. We use induction on the number of timéthe algorithm visits step #7.

Induction Basis ¢ = 0. Now eitherG is a forest (andr is not needed) oF is a circuit of
G. Obviously the planar embedding of this circuit can be plaxéended td-.

Induction HypothesisThe statement is true fér< r. (r > 0)

Induction StatemenfThe statement is true fdr=r + 1.

Incuction Statement ProoFor step #7.1 the matter is clear. If, in step #£4s potentially
drawable in the region of R, it can always be drawn in this region without endangerirtgsst
guent steps. In other words, any possible region can be ohdses is because the region can
be exchanged for another at all times by "reflection” withpexs to the vertex (and possibly
rescaling):




CHAPTER 6. DRAWING GRAPHS 89

Similarly, if in step #7.3,P is drawable in a region aR, then it can be drawn in this region
without endangering subsequent stepsPlis drawable in both regior; and regions,, its
contact vertices are boundary vertices of bettands,. At any time, a drawnP (or part of
it) can be moved from regiom, to s,, or vice versa, simply by reflection with respect to the
common boundary (and possibly rescaling to fit into the negio O

Remark. Nonplanar graphs may be embedded on closed continuouscegrigith holes. For
instance, a torus is closed surface with exactly one hole.a@urus we can embed the non-
planar graphsk;, K¢ and K7, and alsoK; ;. Kg is more complex and its embedding requires
a closed surface with two holes. The smallest number of oleslosed surface required for
embedding the grapfi on it is called thegenusof G. On the other hand the smallest number of
crossings of edges in a drawing Gfon plane is called therossing numbeof G. Computation

of genus and crossing number are bgthP-complete problems.

A coloring of a graph is a labeling of vertices where adjacent vertieaginshare a label.
The labels are then often calledlors We say that a graph #s-colorableif it can be colored
using (at most}k colors. If a graph is colorable then it obviously can not himaps. Equally
obviously, parallel edges can be reduced to one, so we magnassur graphs here to be simple.
The smallest numbér for which the grapl@ is k-colorable, is called thehromatic numbeof
G, denoted by (G).

K, is an example of a planar simple graph which is3wablorable. On the other hand there
is the celebrated

Theorem 6.5. (The Four-Color Theorem)Every simple planar graph i$-colorable.

Proof. The only known proofs require extensive computer runs. Tisé $uch proof was ob-
tained by Kenneth Appel ja Wolfgang Haken in 1976. It takeshoil book to present the
proof: APPEL, K. & HAKEN, W.: Every Planar Map is Four Colorablédmerican Mathemat-
ical Society (1989). O

If we require a bit less, i.eh-colorability, then there is much more easily provable itgsu
and an algorithm.

Theorem 6.6. (Heawood’s Theorem or The Five-Color Theorenttvery simple planar graph
is 5-colorable.

Proof. We may think ofGG as a planar embedding. We use induction on the numbévertices
of G.

Induction Basisn = 1. Our graph is now-colorable since there are no edges.

Induction HypothesisThe theorem is true far < /. (¢ > 1)

Induction StatemenfThe theorem is true fat = ¢ + 1.

Induction Statement ProoAAccording to the Minimum Degree Bound, there is a ventex
in G of degree at mosi. On the other hand, according to the Induction Hypothesgtiaph
G — v is 5-colorable. If, in this coloring, the vertices adjacenttare colored using at most
four colors, then clearly we céancolorG.

So we are left with the case where the vertices,, v3, v4, v5 adjacent tov are colored
using different colors. We may assume that the indexing efvértices proceeds clockwise,
and we label the colors with the numbér, 3, 4, 5 (in this order). We show that the coloring
of G — v can be changed so that (at most) four colors suffice for aujari, vo, v3, v4, V5.

We denote by, ; the subgraph ofs — v induced by the vertices colored wittandj. We
have two cases:
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e v; andvs are in different component$; andH; of H, ;. We then interchange the coldrs
and3 in the vertices off; leaving the other colors untouched. In the resulfingploring
of G — v the vertices); andvz both have the color. We can then give the col@rto v.

e v; andvz are connected iff; 3. Then there is a;—v; path in H; 3. Including the vertex
v we get from this path a circui@’. Now, since we indexed the vertices vs, v3, vy, v5
clockwise, exactly one of the verticesandu, is insideC'. We deduce that, andv, are
in different components aff, 4, and we have a case similar to the previous one. [

The proof gives a simple (recursive) algorithm fecoloring a planar graph, the so-called
Heawood'’s Algorithm

6.2 The Davidson—Harel Algorithm

For the actual drawing of a graph we need to define the drawieg @he "window”), i.e. a
rectangular area with sides parallel to the coordinate,dkesdrawing curve of the edges (here
edges are drawn as line segments), and certain "criteriaaftly”, so that the resulting drawing
is pleasant to the eye, balanced, and as clear as possilde.’l®auty criteria” are of course
context-dependent and even matters of individual tastehdrsequel we restrict ourselves to
simple graphs, given by, say, an adjacency matrix or aneatex incidence matrix.

We will now present the so-callddavidson—Harel Algorithrhwhich, applying an anneal-
ing algorithm, aims at better and better drawings of a graghgua certairugliness function
(cf. Section 5.7). An ugliness functiail computes a numericaigliness valuebtained from
a drawingP of a graphG. This value is a sum of various contributing factors. We denas
usual, the sets of vertices and edge&:dby {vy,...,v,} and{ey, ..., e,}, respectively. We
also denote by; the vector (or geometric point) corresponding to the verieand bye; the
line segment corresponding to the edgeFurther, we denote

dij = |lvi — vy,
r; = distance ofv; from the right border of the window,
[; = distance ofv; from the left border of the window,
u; = distance ofv; from the upper border of the window,
b; = distance ofv; from the lower border of the window,
c¢; = length of the line segment;,
) 1,ifthe line segments; ande; intersect without; ande; being adjacent
Y7 ) 0 otherwise,

{distance ofv; from the line segmery; if it exceedsy andv; is not an end vertex af;
9ij =

~ otherwise.

v is a parameter of the algorithm telling how close to vertiedges can be. The ugliness
function is then given by

4The original reference is &/IDSON, R. & HAREL, D.: Drawing Graphs Nicely Using Simulated Annealing.
ACM Transactions on Graphids (1996), 301-331.
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1 1 1 1 =
—/\12Z—+/\Qz<ﬁ+l2+$+b2)+)\32

i=1 j=i+1 ZJ

where), ..., \; are nonnegative-valued parameters weighting the comiitgiof the various
factors. (One could actually use negative values as weltevier the interpretation then might
be.)

We can computé;;, . . ., g;; quite easily using some basic formulae of vector geometgy. W
must, however, think about the speed of the computation dls Wae way to speed up the
computation is to use complex arithmeti¢,;, . . ., g;; are then equally easily computablét
may also be of advantage to force the vertices into a latfigeeometric points. This can be
achieved for instance by rounding the coordinates (or cerplumbers) to a fixed accuracy
and abandoning drawings where the ugliness function hagiheco (this happens e.g. when
vertices occupy the same point).

In the annealing process the statefisand the response B(P). An initial state can be
obtained by choosing the points, ..., v, in the window randomly, and then drawing the
edges accordingly. The state transition prodess- A,(P) is the following:

e Choose a random vertex. (Alternatively the vertices may be circulated cyclicglly

e Draw a circle of radiug centered orv;. The radiusp is a parameter, which is initially
large and gradually reduced later in some systematic fashio

e Chose arandom point on this circle.

e If uis outside the drawing window, the state remains the samieer@ise sew; < u
and change the edges accordingly in the drawing.

The remaing parts of the algorithm are very similar to theeafing algorithm for the TSP in
Section 5.7.

Remark. This method has numerous variants. The window could be & @md the edges
concentric arcs or radii. Or the window could be a sphere addes drawn as arcs of great
circles. The window could also be unbounded, for instarieewthole ofk%. We could "draw”
graphs three-dimensionally. Etc. We could also use a methier than the Euclidean one when
computing distances, e.g. the Manhattan metrit-iform”) or the max-metric (dc-norm”),
geodetic distances on a sphere, etc. Needless to say, tiigrrggirawings are rather different
using these variants of the algorithm.

It may be noted that using nearly any effective criteria,ifigdhe optimally pleasing draw-
ing of a simple graph is aWP-hard problem.

SNote that ifz; = 2, + jyi andzy = x2 + jy2, Wherej is the imaginary unit, then the real partgt:, equals

the dot productzy,y1) e (22, y2) and the imaginary part equals the determir’%rilt zz .




Chapter 7
MATROIDS

Many concepts in the preceding chapters do not so much ddabwaphs themselves as their
structural properties. Examples are various dualitiesgetivs. circuit), principles behind cer-
tain algorithms (e.g. Kruskal's Algorithms), and varioxsremality properties (many structures
are the "smallest of their kind”, one cannot e.g. remove ageeaf a cut set without it losing
this property).

Exactly corresponding structures were found in many othesisaof mathematics, and they
were called matroids.

7.1 Hereditary Systems

A hereditary family of sets a family of sets such that whenever a 8eis in the family then
so are all subsets df (and in particular the empty s@). A hereditary systemd/ of a setF

is a nonempty hereditary family,, of subsets of2. Included there are also the various ways
of specifyingZ,,, calledaspectsit will be assumed in what follows thd is a finite set. The
following nomenclature is traditional:

e Sets in the familyZ,, are calledndependent setsf M.

e The family of subsets aF other than those i), is denoted byD,, and called the family
of dependent setsf M.

e An independent set imiaximalif it is not a proper subset of another independent set. A
maximal independent set is calletbasis.The family of all bases is denoted By,. Note
that an independent set is always contained in a basis.

¢ A dependent set isiinimalif no dependent set is its proper subset. A minimal dependent
set is called aircuit.? (Recall that the empty set is alwaysdn,.) The family of all
circuits is denoted b¥,,. Note that a dependent set always contains a circuit.

e A circuit consisting of only one element is a so-calledp. Elements of a circuit with
two elements are callgohrallel. A hereditary system isimpleif it has no loops and no
parallel elements.

1The remarkable thing is that many of these structures wenediindependently at the same time around the
year 1935: Hassler Whitney investigated planarity of gsaj@aunders MacLane geometric lattices of points, and
Bartel van der Waerden'’s topic was independence in vectaresp

2This or any other "familiar sounding” concept should not leafused with the corresponding concept for
graphs, even though there is a certain connection, as wileba!

92
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e Therank of a subsetF’ of E is the largest size of an independent set containeH.in
(Recall thatE' is assumed to be finite.) Note that the empty set is alwaysdependent
set contained it". The rank ofF' is denoted by, (F"), andp,, is called theank function
of M.

A notation similar to one used for graphs will be adopted m $kquel concerning adding
an element to the setl” (denoted byF' + ¢) or removing it fromF (denoted byF" — ¢). Two
easy properties of the rank function are the following

Theorem 7.1.1f M is a hereditary system of the sBtthen
() pu(0) =0, and

(i) for any subsef’ of £ and any elemen,
pu(F) < pu(F +e) < pu(F) + 1.

Proof. Item (i) is clear, so let us move to item (ii).

SinceF + e contains those independent sets that are containEdwe havep,, (F + ¢) >
pu (F). On the other hand, possible independent subsedisiot not contained inf” may only
consist of an independent subsetfoénde, sopy (F + e) < py(F) + 1. O

A hereditary systemi/ may of course be specified by giving its independent setsisHhy
giving Z,,. It can be specified as well by giving its bases, Bg;, independent sets will then
be exactly all subsets of bases. On the other hand;an be specified by giving its circuits,
i.e.Cys, independent sets are then the sets not containg circuitallyi M/ can be defined by
giving the rank functiorp,,, since a sef" is independent exactly when,(F') = #(F). (As
before, we denote cardinality of a gétoy #(F").) Thus an aspect may involve any&f;, B/,
CM andpM.

It might be mentioned that a hereditary system is a far toeggrconcept to be of much
use. This means that well chosen aspects are needed totrésrconcept to a more useful one
(that is, a matroid). Let us have a look at certain proper@spa connection with a matroid
well familiar from the preceding chapters.

7.2 The Circuit Matroid of a Graph

The circuit matroid M (G) of a graphG = (V, E) is a hereditary system of the edge #&t
whose circuits are the circuits of, considered as edge sets. (It is naturally assumed:ihsit

not empty.) The bases df/ (G) are the maximal independent edge sets, i.e. spanningdorest
of G, and the independent sets &f(G) are the subforests, both considered as edge sets. Let
us denote> = (V, F') for a subset’” of E. The number of vertices d@f is denoted by:, as
usual.

Remark. A hereditary system that is not directly a circuit matroidafy graph but has a
structure identical to one is calledgraphic matroid.

Let us then take a look at different aspects of the circuitronct
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Basis Exchange Property

Let us consider two bases (i.e. spanning foreB{sand Bs. If ¢ is an edge im3, its removal
divides some component’ of the graphG into two disjoint subgraphs. Now certain edges of
B; will be the branches of a spanning tréeof ', and similarly, certain edges B, will be
the branches of a spanning treof G’. The removed edgeis either a branch df; or then a
link of T3. In the latter case will be in the fundamental cut set determined by a brafcii 75
(cf. Theorem 2.7). Thefi; — e+ f is also a spanning tree 6f and we can replaceby f and
get again a spanning forest@f that is, a basis.

Hence we have

Basis Exchange Property:If B; and B, are different bases and¢ B; — B, then there is an
elementf € B, — B; such thatB, — e + f is a basis.

In general, a hereditary system with the basis exchangespsowill be a matroid. In other
words, the basis exchange property is a proper aspect. Wbsisig exchange one can move
from one basis to another. All bases are thus of the same size.

Uniformity. Absorptivity

For a subset’ of E let us denote by.» the number of vertices in the subgraph) of G
induced byF’, and bykr the number of its components. Then there aye— k- edges in a
spanning forest of /). Let us denote further bk the number of components of the subgraph
Gr of G. Clearly then

PM(G)(F) =np —kr=n— Kp,

and all such spanning forests are of the same size. Hence

Uniformity: For a subsett’ of E all maximal independent subsetsiofare of the same size.
(Maximality of a setf means here that there are no independent $etsch thatd C J C F.)

In general, a hereditary system with the uniformity propevill be a matroid, and uniformity
is a proper aspect.

In the figure below continuous lines are the edged pfwith the thick ones being the
branches of a spanning forest. Dashed lines indicate thainémy edges irt.

If ¢ is an edge of> andpy;)(F + e) = pa(e)(F) thene does not connect two components
of Gr. Supposef is another edge with the same property, thapis.:) (F + f) = pue)(F).
Clearly then
pue)(F +e+ f) = pue)(F).
Thus we get

Weak Absorptivity: If e, f € EFandF C F and

pu(F) = pu(F +e) = pu(F + f)
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then also
pu(F +e+ f)=pu(F).

In general a weakly absorptive hereditary system is a nthteod thus weak absorptivity is
another proper aspect.

By repeating the above argument sufficiently many times \edlsat if  and F” are sets of
edges of, and for each edgein " we havep,; o) (F + e) = pu)(F), then

pue)(FUF') = pae) (F).
Hence also

Strong Absorptivity: If F, F' C E andpy (F + e) = py(F) for each elementin F’ then

pur(F U F') = pu(F).

We conclude that strong absorptivity is a proper aspect.
Augmentation

Supposd; and/; are independent sets of the circuit matrdidG) (edge sets of subforests
of G) and#(1,) < #(1,). The subgraplir;, then has:, — #(1;) components, and the subgraph
G, hasn — #(1,) components, so strictly less thé&h,. Adding an edge does not reduce the
number of components exactly in the case where the edge éladdome component. Thus,
if adding any edge i, — I to G, preserves the number of components then it must be that
the edge is added in some component:ef, andG, cannot have fewer components thap.
But as noted, this is not the case#f ;) < #(I>), and so

Augmentation: If [; and I, are independent sets of the hereditary sysfdmand #(1;) <
#(1,) then there exists an element& I, — I; such that/; + e isinZy,.

In general, a hereditary system with the augmentation ptpjsea matroid. Thus augmentation
is a proper aspect, too.

Elimination

The circuits of the circuit matroid/(G) are the edge sets of the circuits@f The degree
of a vertex in a circuit is two. I andC; are different circuits of\/(G) then the degree of
a vertex of the ring suniC) @ (C,) is also even, see Section 1.3. Hercg) @ (C;) must
contain at least one circuit as a subgraph, since a ring s@® ot have isolated vertices and
a nonempty forest has at least one pending vertex (Theor@mn Recalling the definition of
ring sum in Section 1.3 it is noticed that such a circuit dagtscontain edges in the intersection
C1 N Cy, at least not with as high multiplicity as i, U C5. Thus

Elimination Property: If C; and C, are different circuits of the hereditary systei and
e € 1N Cythenthere is a circuitt € Cy; such thatC C ¢, UCy — e

Again, elimination property is a proper aspect, and a h&apdsystem with the elimination
property is a matroid.
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Induced Circuits

If I is an independent set of the circuit matrdifi G) (edge set of a subforest) then adding
one edge either closes exactly one circuit in a compone@t diTheorem 2.3), or then it con-
nects two components 6f; and does not create a circuit. We have then

Property of Induced Circuits: If I is an independent set of a hereditary systeiande € £
thenl + e contains at most one circuit.

The property of induced circuits is a proper aspect, andeditary system having this property
will be a matroid.

7.3 Other Basic Matroids

Vectorial Matroid

Let £ be a finite set of vectors of a vector space (8&Y and the independent sets of a
hereditary system/ of £ be exactly all linearly independent subsetgifincluding the empty
set). M is then a so-calledectorial matroid.Here E' is usually allowed to be a multiset, i.e. its
elements have multiplicities—cf. parallel edges of graphis then agreed, too, that a subset of
E is linearly dependent when one its elements has a multiphigher than one. A hereditary
system that is not directly vectorial but is structurallgmdical to a vectorial matroid/’ is
called alinear matroid and the matroid//’ is called itsrepresentation.

A circuit of a vectorial matroid is a linearly dependent §ebf vectors such that remov-
ing any of its elements leaves a linearly independent seepikg in mind possible multi-
ple elements. An aspect typical to vectorial matroids is dheination property. IfC; =
{r,ry,...,rx} andCy = {r,r}, ..., r;} are different circuits sharing (at least) the veatdinen
r can be represented as linear combinations of other vecetdrsthC; andCs,, and in such a
way that all coefficients in the combinations are nonzero.gétehus an equality

k

)

i=1 j=1

Combining (possible) repetitive vectors on the left hardkesiand noticing that this does not
make it empty, we see that U C,; —r contains a circuit. (Note especially the case where either
Cy ={r,r}orCy = {r,r}.)

In the special case whefe consists of columns (or rows) of a mati, a vectorial matroid
of E is called amatrix matroidand denoted by/(A). For example, the circuit matroit! (&)
of a graphG is a linear matroid whose representation is obtained usiegdws of the circuit
matrix of G in the binary fieldGF(2) (see Section 4.5).0f course, if desired, any vectorial
matroid of £ may be considered as a matrix matroid simply by taking théovemf £ as
columns (or rows) of a matrik.

Hereditary systems with a representation in the binary f@R{2) are calledbinary matroids. The circuit
matroid of a graph is thus always binary.

4This actually is the origin of the name "matroid”. A matrogld generalization of a linear matroid and a linear
matroid may be thought of as a matrix. Indeed, not all magr@ick linear. The name "matroid” was strongly
opposed at one time. Even today there are people who prefesetmames like "geometry” or "combinatorial
geometry”.
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Transversal Matroid

Let A ={A;,..., A} be afamily of nonempty finite sets. Thensversal matroid/(.A)
is a hereditary system of the set= A, U --- U A, whose independent sets are exactly all
subsets of’ containing at most one element of each of the set@including the empty set).
Here it is customary to allow the familyl to be a multiset, that is, a sdt may appear several
times as its element, thus allowing more than one element of an independent set.

A natural aspect of transversal matroids is augmentatiod, ikis connected with aug-
mentings of matchings of bipartite graphs! (See Sectior) 9.8t us define a bipartite graph
G = (V, E') as follows: The vertex set I8 = £ U A, and the vertices andA; are connected
by an edge exactly whene A;. (Note how the vertex sét is naturally divided into the two
parts of the cutF and.A.) An independent set af/(.A) is then a set of matched vertices@f
in £, and vice versa.

Example. In the figure below is the bipartite graph corresponding te transversal matroid
of the family{{1, 2}, {2, 3,4}, {4,5}}, and its independent s¢t, 2, 4} (thick line).

1
2 {1,2}
3 {2,3,4)
4 {4,5)
5

Very much in the same way as in the proof of Theorem 5.3 one ey ¢hat if /; and/; are
independent sets (vertex sets of the matchitigand.S;) and#(1;) < #(I2) then there is an
augmenting path of the matchiryy such that the new matched vertex isfin ThusM/(.A)
indeed has the augmentation property.

Remark. For matchings of bipartite graphs the situation is comgletgeneral. That is, match-
ings of bipartite graphs can always be thought of as indepahdets of transversal matroids.
In fact this remains true for matchings of general graphs, teading to the so-calleghatching
matroids see e.gSWAMY & THULASIRAMAN.

If the sets of the family4 are disjoint—i.e. they form a partition &df—then the transversal
matroid is also calle@artition matroid.For a partition matroid augmentation is obvious.

Uniform Matroid

For all finite sets” one can define the so-calladiform matroidsThe uniform matroid o®
of rankk, denoted/,(E), is a hereditary system whose independent sets are extatlyjpaets
of F containing at mosk elements. The bases bf.(F) are those subsets containing exactly
k elements, and the circuits are the subsets containinglgxa¢t 1 elements. In particular, all
subsets of’ form a uniform matroid of of rank# (E), this is often called th&ee matroidof
E. Quite obviouslylU/;(E') has the basis exchange property and the augmentation fyroper
Uniform matroids are not very interesting as such. They @unded as "building blocks”
of much more complicated matroids, however. It may also bedthat uniform matroids are
transversal matroids (can you see why?).
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7.4 Greedy Algorithm

Many problems of combinatorial optimizatibmay be thought of as finding a heaviest or a
lightest independent set of a hereditary systefrof £, when each element dof is given a
weight. The weighting function is : £ — R and the weight of asdf C F'is

Za(e).

ecF

The two optimization modes are interchanged when the siftieaveights are reversed.

One may also find the heaviest or the lightest bases. Agaemsieyg the signs of the weights
interchanges maximization and minimization. If all basesaf the same size—as will be the
case for matroids—they can be restricted to the case where tieights are positive. Indeed,
if A isthe smallest weight of an elementBfthen changing the weight function to

81 8(e) = 1+ a(e) - A

one gets an equivalent optimization problem with positieaghts. On the other hand, maxi-
mization and minimization are interchanged when the waighunction is changed to

B:B(e) =1+B—ale)
whereB is the largest weight of an element bf

Example. (A bit generalized) Kruskal’'s Algorithm (see Section 5.60$i a lightest spanning
forest of an edge-weighted graph i.e. a lightest basis of the circuit matroid 6f As was seen,
this can be done quite fast—and even faster if the edges aem g the order of increasing
weight when one can always consider the "best” remainingestigbe included in the forest.
Kruskal’s Algorithm No. 1 is an example of a so-called grealdyprithm that always proceeds
in the "best” available direction. Such a greedy algorithefast, indeed, it only needs to find
this "best” element to be added in the set already constraicte

It might be mentioned that Kruskal’s Algorithm No. 3 is alsgraedy algorithm, it finds a
heaviest cospanning forest in the dual matroid of the cinaatroid, the so-called bond matroid
of G (see Section 7.6).

Even though greedy algorithms produce the correct resultifouit matroids they do not
always do so.

Example. Finding a lightest Hamiltonian circuit of an edge-weightgchph G may also be
thought of as finding the lightest basis of a hereditary systeassuming of course that there
are Hamitonian circuits. The sdf is again taken to be the edge set@fbut now the bases
are the Hamiltonian circuits o7 (considered as edge sets). A lightest basis is then a light-
est Hamiltonian circuit. As was noticed in Section 5.7, figda lightest Hamiltonian circuit

is a well-known\P-complete problem and no greedy algorithm can thus alwagsiyre a
(correct) result—at least iP # NP. The hereditary system thus obtained is in general not a
matroid, however (e.g. it does not generally have the basisange property).

It would thus appear that—at least for matroids—greedyrélyms are favorable methods
for finding heaviest/lightest bases (or independent sétsleed, matroids are precisely those
hereditary systems for which this holds true. To be able taged further we define tlygeedy
algorithmformally. We consider first maximization of independenssatinimization is given
in brackets. The input is a hereditary systéfmof the setF, and a weighting function.

SThese problems are dealt with more extensively in the coDp@nization Theory 2.
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Greedy Algorithm for Independent Sets:

1. Sortthe elements, . .., e, of I/ according to decreasing [increasing] weight;, . . .
€(m).

2. SetF « () andk « 1.

3. Ifalew)) < 0[aler)) > 0], return F and quit.

4. If alew)) > 0 [alew)) < 0land F U {eq, } is independent, set < F' U {e)}.
5. If K = m, returnF and quit. Else set <+ k£ + 1 and go to #3.

For bases the algorithm is even simpler:

Greedy Algorithm for Bases:

1. Sortthe elements, . .., e, of I/ according to decreasing [increasing] weight;, . . .
e(m).

2. SetF «+ () andk «+ 1.

3. If FU {ew} is independent, s€t < F' U {e( }.

4. If k = m, returnF and quit. Else set < k£ + 1 and go to #3.

The main result that links working of greedy algorithms aratmoids is

Theorem 7.2. (Matroid Greediness TheoremY he greedy algorithm produces a correct heav-
iest independent set of a hereditary systemall weight functionsf and only if the system is
a matroid. (This is the so-callegreediness proper)yThe corresponding result holds true for
bases, and also for finding lightest independent sets andsbdsurthermore, in both cases it
suffices to consider positive weights.

Proof. The first sentence of the theorem is proved as part of the miodheorem 7.3 in the
next section.

As noted above, greediness is equivalent for maximizatwirainimization, for both inde-
pendent sets and bases. It was also noted that finding a bebags may be restricted to the
case of positive weights. Since for positive weights a hestundependent set is automatically
a basis, greediness for bases follows from greedinessdependent sets.

On the other hand, if greediness holds for bases, it holdsfi@pendent sets as well. Max-
imization of independent sets using the weight functidinen corresponds to maximization of
bases for the positive weight function

B Ble) =1+ max(0, a(e)),

the greedy algorithms behave exactly similarly, item #3as activated for independent sets.
Elements of weight should be removed from the output. O

Remark. Greediness is thus also a proper aspect for matroids. Foedhiéary families of sets
it is equivalent to usefulness of the greedy algorithm. &erother similar but more general
families of sets have their own "greediness theorems”. EXasiare the so-calledreedoids

andmatroid embeddings.
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7.5 The General Matroid

Any one of the several aspects above makes a hereditaryrsgsteatroid. After proving that
they are all equivalent, we may definaratroid as a hereditary system that has (any) one of
these aspects.

Before that we add one aspect to the list, which is a bit mdfedlit to prove directly for
circuits matroids of graphs:

Submodularity: If M is a hereditary system of the s8tand F, F’ C E then

pu(F' N EF) + par (F U F') < par(F) + par (F).

Let us then prove the equivalences, including submodularit

Theorem 7.3.If a hereditary system has (any) one of the nine aspects b@lemwit has them
all (and is a matroid).

(i) Uniformity (vi) Submodularity

(i) Basis exchange property (vii) Elimination property

(i) Augmentation property (viii) Property of induced circuits
(iv) Weak absorptivity (ix) Greediness

(v) Strong absorptivity

Proof. The implications are proved following the strongly conmelctligraph below:

v |
(i) —> (i) —> (i) —>(iv) —>)

(vi)

(Vi) — (Vi) —(ix)

All nine aspects are then connected by implication chaifmih directions, and are thus logi-
cally equivalent. Let us consider a general hereditaryesydt/ of the set~.

()=-(ii): As a consequence of uniformity, all basesidfare of the same size. By, B; €
By ande € By — By, we may apply uniformity to the sét = (B; — e¢) U By. All maximal
independent sets included i are then of the same size & (and B;). Now B; — e is not
one of these maximal sets having too few elements. On the b#mel, by adding one element
f to B; — e we get such an independent $£t The elemenf must then be in the set difference
By — By, SOH = B; — e + f. Moreover,H has as many elements Bs, and so it is a basis.

(i) =-(iii): If 1,1, € Iy and#(I;) < #(I,), we choose basd$, andB, such that/; C B;
and/, C B,. Applying basis exchange (repeatedly) we replace thoseesits of B, — I; that
are not inB, by elements of3,. After this operation we may assume tiiat— I, C By. Asa
consequence of the basis exchange property all bases &e sdme size. Thus

#(By — 1) = #(B1) — #(11) > #(Bs) — #(l2) = #(By — 1),

andB; — I, cannot be included i3, — I,. Therefore there is an elementf B, — I, in I, and
I; + e is an independent set.
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(i) =(iv): Let us consider a situation where

pu(F) = pu(F +e) = pu(F + f).

If now pp (F +e+ f) > pu(F), we take a maximal independent subsetf /' and a maximal
inpendent subsdt, of F' + e + f. Then#(1l,) > #(I;) and by the augmentation propetty
can be augmented by an element/af This element cannot be iR (why not?), so it must be
eithere or f. Butthenp, (F) < pap(F +¢€) or par(F) < par(F + f) (V)-

(iv)=-(v): Let us assume weak absorptivity and consider subisetad ' of E such that
pu(F +e) = py(F) for each element of . We use induction ok = #(F’ — F') and show
thatpy, (F') = pau (F U F') (strong absorptivity).

Induction BasisNow k£ = 0 or k£ = 1 and the matter is clear.

Induction HypothesisThe claimed result holds true wheén< ¢. (¢ > 1)

Induction StatemenftThe claimed result holds true whén= /¢ + 1.

Induction Statement Proo€hoose distinct elementsf € F’ — F and denotg” = F’ —
e — f. The Induction Hypothesis implies that

pu(F) = pu(FUF") = py(FUF" +€) = py(F U F” + f).
Applying weak absorptivity to this it is seen that

(V)=(i): If I isamaximalindependent subsetrothenp,,(I+e) = py(I) for elements in
the set differencé’ — I (if any). Strong absorptivity implies then thai; (F') = pa (1) = #(1),
i.e. all these independent sets are of the same size andnitifdnolds true.

()=-(vi): Let us consider set8, F’ C E and denote by, a maximal independent subset of
the intersectiorF’ N I’ and by/, a maximal inpendent subset of the unibru F’. Uniformity
implies augmentation, so we may assume thas obtained from/; by adding elements, that
isI; C I,. Now I, N F'is an independent subset Bfand/, N F’ is an independent subset of
F’, and both of them includg . So

pu(FEOF) + pu(FUF') = #(11) + #(12)
= #(LNF)+#(NF') < pur(F) + pu(F).

The equality marked by an asterisk is a set-theoreticalsaethe figure below.

<>

N

(vi)=-(vii):Let us consider distinct circuit§’;, Cs € C); and an element € C; N C5. Then
pu(Ch) = #(C1) —Landpy (Ca) = #(Cs) — 1, andpp (C1 N C) = #(C1 N C2). (Remember
that every proper subset of a circuit is independent.) If agwC, —e does not contain a circulit,
itis independent ang,, (C,UCy—e) = #(C1UCy)—1, whencep,, (C1UCy) > #(C1UCy)—1.
Submodularity however implies that

pr(C1 N Co) + par(CLU Co) < par(Ch) + par(Ca),
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and further that (check!)
#(C1NCy) + #(CLUC,) < #(Ch) + #(Cs) — 1.

This is a set-theoretical impossibility, and thtisu C'; — e does contain a circuit.

(vii)=-(viii): If I is an independent set ardd+ e contains two distinct circuité’; and Cs
then obviously botlC; and 'y contain the element. The elimination property implies that
C1 Uy — e contains a circuit. Sincé€, U Cy — e is however contained in, it is independent
(v/). SoI + e contains at most one circuit.

(viii) =(ix): Let us denote by the output of the greedy algorithm for the weighting functio
a. (The problem is finding a heaviest independent setl)is$fa heaviest independent set, then
the matter is clear. Otherwise we take a heaviest indepésdehaving the largest intersection
with 7. Let us denote this heaviest independent sat' by cannot be a subset &f, because the
greedy algorithm would then find an even heavier indeperskint_et us further denote laythe
first element of the set differende- I’ that the greedy algorithm choosds+ e is a dependent
set and contains thus exactly one ciraui{fremember the property of induced circuits). This
circuit of course is not included if, so there is an elemerfte C' — I. Sincel’ + e contains
only one circuit,/’ + e — f is an independent sef! is maximal, so that(f) > «(e). On the
other handf and those elements éfthat the greedy algorithm chose before choosiage all
in I’, whence adding to the elements does not create a circuit. This meangtvas available
for the greedy algorithm when it choseand son(f) < a(e). We conclude that(f) = a(e)
and the setg’ + ¢ — f andI’ have equal weight. This however is contrary to the choicg of
because#((I' +e— f)N1I) > #(I' N 1). (The reader may notice a similarity to the proof of
Theorem 5.2. Indeed, this gives another proof for Kruskaligorithm No. 1.)

(ix)=>(iii): Let us consider independent sdtsand/, such that#(1;) < #(I>). For brevity
we denote: = #(1[;). Consider then the weighting function

k+2, |f€ c [1
a:ale)=<Rk+1,ifeeclhb—1I
0 otherwise.

The weight ofl, is then

Y ale) > (k+ 1) >k(k+2)=> ale).

ecls ecly

It is thus larger than the weight di, so I; is not a heaviest independent set. On the other
hand, when finding a heaviest independent set the greedsthlgavill choose all elements of

I, before it ever chooses an element/of- I;. Since it is now assumed to produce a heaviest
independent set, it must choose at least one elear@nt, — /; and/; +-¢ is thus an independent
set. This shows that the augmentation property holds true. O

The most popular aspect defining a matroid is probably thenangation property.

7.6 Operations on Matroids

In the preceding chapters, in connection with fundamenitisets and fundamental circuits,
mutual duality was mentioned. Duality is a property thatesywnatural for hereditary systems
and matroids.
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The dual (systerm M* of a hereditary systemV/ of the setF is a hereditary system df
whose bases are the complements of the basé¢ (dgainstF). Often the bases af/* are
calledcobase®f M, circuits of M* are calledcocircuitsof M, and so on. It is easily checked
that M/* really is a hereditary system & If B, andB, are distinct bases df/* thenB; and
B, are distinct bases df/. Thus, if B, C B, thenB, C B, (/). Note also thatM*)* = M.

Theorem 7.4. (Whitney’s Theorem)The dual)M* of a matroidM is a matroid, the so-called
dual matroidand

pur=(F) = #(F) = pu(E) + pu(F ).
(Note thatp,,(E) is the size of a basis dff.)

Proof. Let us show thafi/* has the basis exchange property, which makes it a matroa@cc
ing to Theorem 7.3. 1B, and B, are distinct bases of/* ande € B, — B, then B, and B,
are distinct bases ¥/ ande € B, — B;. SinceB; is a basis ofM/, B; + e contains exactly
one circuitC' of M (the property of induced circuits) and this circuit must éan element
f € By — By. Then howeveB; + e — f does not contain a circuit df/, i.e. itis an independent
set of M, and has the same size@s All bases have the same size,Bp+ ¢ — f is a basis of
M and its complemenB; — e + f is a basis of\/*.

To compute the rank,,- (F') we take a maximal independent gétof A/* included inF.
Then

pu(F) = py«(H) = #(H).
Then H is a minimal set containing the sét and a basis of\/. (This is simply the same
statement in other words. Note thAt is included in some basis af/*.) But such a set is

obtained starting fronf", taking a maximal independent setaf contained inF—which has
pu( F') elements—and extending it to a basis—which hg$F) elements. So

#(ﬁ) - #(f) = pu(E) —PM(f)-

Set theory tells us that

#(H) + #(H) = #4(E) = #(F) + #(F).
Combining these we get the claimed formula fgr- (F") (check!). 0J

Dualism gives a connection between bases of a mafrbignd circuits of its dual matroid
M* (i.e. cocircuits ofM):

Theorem 7.5. (i) Circuits of the dual matroid of a matroidl/ are the minimal sets that intersect
every basis of/.

(i) Bases of a matroid/ are the minimal sets that intersect every circuit of the duatroid
M*.

Proof. (i) The circuits of M/* are the minimal sets that are not contained in any compleofent
a basis of\/. Thus they must intersect every basis\éf

(i) Bases of M * are the maximal sets that do not contain any circuib6f. The same in
other words: Bases di/ are the minimal sets that intersect every circuif\df. O

Example. Bases of the circuit matroid/ (G) of a connected graply are the spanning trees.

Bases of the dual matroit! * (') are the complements of these, i.e. the cospanning treefeBy t
theorem, circuits of the dual matroid are the cut set&o{Cf. Theorems 2.4 and 2.5.) Because
according to Whitney’s Theore* () is a matroid, it has the greediness property, that is, the
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greedy algorithm finds a heaviest/lightest basis. Workingraskal’s Algorithm No. 3 is based
on this. The algorithm finds the heaviest cospanning tree.

Analogous concepts can naturally be defined for a generakipty disconnected, gragh.
Bases of\/* (&) are then the cospanning forests@f The dual matroid\/*(G) is called the
bond matroidor the cut matroidor the cocircuit matroidof G. So, when is the bond matroid
M*(G) graphic, i.e. the circuit matroid of a graph? The so-callthitney Planarity Theorem
tells us that this happens exactly wh@ns a planar graph! (See e.QVEST.)

If M, is a hereditary system of the sBtfori = 1,..., k then thedirect sumM = M; &
- -@® M, of the systemd/;, . .., My is the hereditary system of the §ét= E; U- - -U E}, whose
independent sets are exactly all sits) - - - U I, wherel; € 7, (i = 1,..., k). In particular,
if £, =--- = E, = F then the direct sumi/ is called theunionof the systemd/,, ..., M,,
denoted byV/ = M; U---U M,. Note that each hereditary systéif) could also be thought of
as a hereditary system of the gesimply by adding elements @ — E; as circuits (loops, that
IS).

It is not exactly difficult to see that if/y, . . ., M, are matroids and the sefs, ..., £, are
pairwise disjointther/ = M; & - - -& M, is a matroid, say, by demonstrating the augmentation
property (try it!). But actually a more general result holdse:

Theorem 7.6. (Matroid Union Theoren®) If M, ..., M, are matroids of the seF then the
unionM = M, U ---U M, is also a matroid ofz and

FICF

pu : pyu(F) = min (#(F —F)+ iﬂMi(F/))-

Proof. The proof is rather long and difficult, and is not given heee(s.g. VEST or OXLEY.)
It might be mentioned, though, that the rank formula is ndidvior hereditary systems in
general. O

The theorem has many fundamental corollaries, e.g.

Corollary. (Matroid Covering Theorem’) If M is a loopless matroid of the sét then the
smallest number of independent sets whose union eduls

#(F)
max .
FCE | py(F)
Proof. Note first that sincé/ is loopless, each element &fis in itself an independent set. The
setE thus can be covered as stated. Take ha@apies ofM as the matroidd/,, ..., M, inthe

union theorem. The# is a union oft independent sets dff exactly when itis an independent
set of the union matroid/’ = M; U - - - U Mj. The covering property we are interested in can
then be expressed in the fomy, (F) = #(F) or, by the union theorem,

#(E) = min (#(E = F) + Y pas (F)
i.e.
%Ilci%(kpM(F) — #(F)) = 0.

Since the difference to be minimized4s 0 when F' is the empty setk will be the smallest
number such that > #(F')/py (F) for all nonempty subsets C E. O

6Also known by the nameBdmonds—Fulkerson TheoreandMatroid Sum Theorem.
"Also known asEdmonds’ Covering Theorem.
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Example. For the circuit matroidM (G) of a loopless grapltz independent sets are the sub-
forests ofG, and we are interested in the minimum number of subforegidatkto contain all
edges of5. Let us denote this number BYG), it is called thearboricityof G.

To analyze the maximization in the covering theorem we elithe subgrapiZ’) induced
by the edges i’ into its components. Numbers of vertices and edges of tloespanents are

denoted by, ..., ng, andms, ..., my,, respectively. We use an indexing such that
m M — m
ke s bl s> L
Nk — 1 7 N1 — 1 ng —1

. . X X X xXr
Now, in general if2 > X then2 > X1 T2 Thus

Yo Y1 Y2 Y1+ Yo

myo mi + Mo
>

ng—l - n1+n2—2’
and continuing inductively, also

ni—l _n1+-~-+ni—i

In particular then

M > m1+"'+mkp _ #(F)
e — 1~ i+ 4, — ke pue)(F)

Maximization can thus be restricted to edge-détsuch that( /") is connected angdy; ) (F) =
nr — 1 whereng is the number of vertices @t. (It might be further restricted to edge-sefts
such that{ 7") also equals the subgraph induced by its vertices, sinceemimyg two vertices by
an edge increases the numerator of the fraction to be maganithe denominator remaining
the same.) Thus we get the celebraiash-Williams Formuldor arboricity:

It might be noted that since for a simple planar gragtiF’) < 3nr — 6 (Linear Bound
applied to(F')), A(G) is then at moss.

Therestriction of a hereditary systemV/ of the setFE into the setF’ C F is a hereditary
system) | whose independent sets are exactly those subséftstiadit are independent sets
of M. Thecontractionof M into the setF’ is the hereditary systef\/*| F')*, often denoted by
M_.F. Clearly the augmentation property &f is directly transferred td/ | F’, so (cf. Whitney’s
Theorem)

Theorem 7.7.1f M is a matroid of the sek’ and F* C FE thenM |F and M. F are both matroids,
too.

Theminorsof a matroidM are all those matroids that can be obtained frahiy consecutive
restrictions and contractions.
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binary matroid 96

bipartite graph 17,76,97
block 15

bond matroid 104

branch 21

Breadth-First Search 59
capacity 80

capacity constraint 80
chord 20

chromatic number 89
circuit 6,23,40,92

circuit matrix 40

circuit matroid 93,105
circuit space 49

cligue 5

closed walk 6

cobasis 103

cocircuit 103

cocircuit matroid 104
coloring of a graph 89
complement of graph 10
complete bipartite graph 17
complete graph 3
component 7,28,43
computational complexity 50
condensed graph 28
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connected digraph 28
connected graph 7

contracting of edge 13
contraction of matroid 105
cospanning tree 20

cross edge 56

cut 16

cut matrix 36

cut matroid 104

cut set 16,24,36

cut space 49

cut vertex 14

Davidson—Harel Algorithm 90
decision problem 50

degree of vertex 2
Demoucron’s Algorithm 87
Demoucron—Malgrange—Pertuiset Algorithm 87
dependent set 92

Depth-First Search 53
deterministic algorithm 50
DFS forest 57

DFS tree 54

difference of graphs 11
digraph 27

Dijkstra’s Algorithm 61

direct sum 104

directed edge 27

directed graph 27

directed spanning tree 31
directed tree 29

directed walk 27

dual hereditary system 103
dual matroid 102

edge 1

Edmonds Covering Theorem 104
Edmonds—Fulkerson Theorem 104
Edmonds—Karp Maodification 84
elimination property 95,100
empty graph 2

end vertex 2

Euler’s Polyhedron Formula 86
Five-Color Theorem 89

flow 80

Floyd’s Algorithm 63
Ford—Fulkerson Algorithm 83
forest 20

forward edge 56

Four-Color Theorem 89

free matroid 97

fundamental circuit 23



fundamental circuit matrix 41
fundamental cut set 24
fundamental cut set matrix 39
fundamental equations 44
fundamental set of circuits 23
fundamental set of cut sets 24
graph 1

graphic matroid 93
greediness property 99,100
greedy algorithm 98

Hall's Theorem 79
Hamiltonian circuit 61,98
Heawood'’s Algorithm 90
Heawood’s Theorem 89
hereditary family 92
hereditary set 92
Hopcroft-Tarjan Algorithm 87
Hungarian Algorithm 77
Hungarian tree 77
impedance matrix 46
in-degree 27

incidence matrix 35
independent set 92

induced subgraph 5
intersection of graphs 11
intractable problem 51
isolated vertex 2

isomorphic graphs 18
Jarnik’s Algorithm 70
Karp—Held Heuristics 73
Kirchhoff's Across-Quantity Law 43
Kirchhoff's Flow Law 80
Kirchhoff's Through-Quantity Law 43
Kruskal's Algorithm 67,98,104
Kuratowski’'s Theorem 87
labeled graph 18

labeling 18

Las Vegas algorithm 51

leaf 29

lightest Hamiltonian circuit 71
lightest path 61,63

lightest spanning tree 66
Linear Bound 86,105

linear matroid 96

link 21

loop 2,92

Marimont’s Algorithm 33
Marriage Theorem 79
matching 76,97

matrix matroid 96

matroid 100

Matroid Covering Theorem 104

Matroid Greediness Theorem 99
Matroid Sum Theorem 104
Matroid Union Theorem 104
Max-Flow Min-Cut Theorem 83
maximal matching 76
maximum degree 3
maximum matching 76,84
minimum degree 3
Minimum Degree Bound 87
minor 105

Monte Carlo algorithm 51
multiplicity 1,12

multiset 1

Nas—Williams Formula 105
NP 51

NP-complete 51,71
NP-hard 51,91
nondeterministic algorithm 50
null graph 2

nullity of graph 8

open walk 6 out-degree 27
P 51

parallel edges 2

parallel elements 92
partition matroid 97

path 6

pendant edge 2

pendant vertex 2

perfect matching 79

planae embedding 85
planar graph 85,104,105
polynmial time 51
polynomial space 51
potential vector 43

Prim’s Algorithm 70
probabilistic algorithm 51
proper difference 12
property of induced circuits 96,100
quasi-strongly connected digraph 29
rank function 93

rank of graph 8

rank of matroid 93
reachability matrix 52
reference vertex 35

region 85

removal of edge 13

removal of vertex 12
representation 96

restriction of matroid 105
ring sum of graphs 11,23
root 29

separable graph 14
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short-circuiting of vertices 13
shortest path 61

simple graph 2

spanning tree 20

stationary linear network 43
stochastic algorithm 51
strong absorptivity 95,100
strongly connected 28
strongly connected component 28
subforest 20

subgraph 3

submodularity 100

subtree 20

symmetric difference 11
Tellegen’s Theorem 48
through-quantity 43
through-source 43
through-vector 43
topological sorting 32
tractable problem 51

trail 6

transport network 80
transversal matroid 97
Travelling Salesman’s Problem 71
tree 20,29

tree edge 54,56,59

trivial graph 2

underlying graph 27

uniform matroid 97
uniformity 94,100

union of graphs 11

union of matroids 104
vectorial matroid 96

vertex 1

walk 6

Warshall's Algorithm 52
weak absorptivity 94,100
weights 18

Whitney's Planarity Theorem 104
Whitney’s Theorem 103
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