
GRAPH THEORY

Keijo Ruohonen

(Translation by Janne Tamminen, Kung-Chung Lee and Robert Piché)

2013

Contents

1 I DEFINITIONS AND FUNDAMENTAL CONCEPTS
1 1.1 Definitions
6 1.2 Walks, Trails, Paths, Circuits, Connectivity, Components
10 1.3 Graph Operations
14 1.4 Cuts
18 1.5 Labeled Graphs and Isomorphism

20 II TREES
20 2.1 Trees and Forests
23 2.2 (Fundamental) Circuits and (Fundamental) Cut Sets

27 III DIRECTED GRAPHS
27 3.1 Definition
29 3.2 Directed Trees
32 3.3 Acyclic Directed Graphs

34 IV MATRICES AND VECTOR SPACES OF GRAPHS
34 4.1 Matrix Representation of Graphs
36 4.2 Cut Matrix
40 4.3 Circuit Matrix
43 4.4 An Application: Stationary Linear Networks
48 4.5 Matrices overGF(2) and Vector Spaces of Graphs

50 V GRAPH ALGORITHMS
50 5.1 Computational Complexity of Algorithms
52 5.2 Reachability: Warshall’s Algorithm
53 5.3 Depth-First and Breadth-First Searches
61 5.4 The Lightest Path: Dijkstra’s Algorithm
63 5.5 The Lightest Path: Floyd’s Algorithm
66 5.6 The Lightest Spanning Tree: Kruskal’s and Prim’s Algorithms
71 5.7 The Lightest Hamiltonian Circuit (Travelling Salesman’s Problem): The Annealing

Algorithm and the Karp–Held Heuristics
76 5.8 Maximum Matching in Bipartite Graphs: The Hungarian Algorithm
80 5.9 Maximum Flow in a Transport Network: The Ford–Fulkerson Algorithm

i

ii

85 VI DRAWING GRAPHS
85 6.1 Planarity and Planar Embedding
90 6.2 The Davidson–Harel Algorithm

92 VII MATROIDS
92 7.1 Hereditary Systems
93 7.2 The Circuit Matroid of a Graph
96 7.3 Other Basic Matroids
98 7.4 Greedy Algorithm
100 7.5 The General Matroid
102 7.6 Operations on Matroids

106 References

108 Index

Foreword

These lecture notes were translated from the Finnish lecture notes for the TUT course on graph
theory. The laborious bulk translation was taken care of by the students Janne Tamminen (TUT)
and Kung-Chung Lee (visiting from the University of BritishColumbia). Most of the material
was then checked by professor Robert Piché. I want to thank the translation team for their effort.

The notes form the base text for the course ”MAT-62756 Graph Theory”. They contain
an introduction to basic concepts and results in graph theory, with a special emphasis put on
the network-theoretic circuit-cut dualism. In many ways a model was the elegant and careful
presentation of SWAMY & T HULASIRAMAN , especially the older (and better) edition. There are
of course many modern text-books with similar contents, e.g. the popular GROSS& Y ELLEN.

One of the usages of graph theory is to give a unified formalismfor many very different-
looking problems. It then suffices to present algorithms in this common formalism. This has
lead to the birth of a special class of algorithms, the so-called graph algorithms. Half of the
text of these notes deals with graph algorithms, again putting emphasis on network-theoretic
methods. Only basic algorithms, applicable to problems of moderate size, are treated here.
Special classes of algorithms, such as those dealing with sparse large graphs, ”small-world”
graphs, or parallel algorithms will not be treated. In thesealgorithms, data structure issues have
a large role, too (see e.g. SKIENA).

The basis of graph theory is in combinatorics, and the role of”graphics” is only in visual-
izing things. Graph-theoretic applications and models usually involve connections to the ”real
world” on the one hand—often expressed in vivid graphical terms—and the definitional and
computational methods given by the mathematical combinatoric and linear-algebraic machin-
ery on the other. For many, this interplay is what makes graphtheory so interesting. There is
a part of graph theory which actually deals with graphical drawing and presentation of graphs,
briefly touched in Chapter 6, where also simple algorithms are given for planarity testing and
drawing. The presentation of the matter is quite superficial, a more profound treatment would
require some rather deep results in topology and curve theory. Chapter 7 contains a brief intro-
duction to matroids, a nice generalization and substitute for graphs in many ways.

Proofs of graph-theoretic results and methods are usually not given in a completely rigorous
combinatoric form, but rather using the possibilities of visualization given by graphical presen-
tations of graphs. This can lead to situations where the reader may not be completely convinced
of the validity of proofs and derivations. One of the goals ofa course in graph theory must then

iii

be to provide the student with the correct ”touch” to such seemingly loose methods of proof.
This is indeed necessary, as a completely rigoristic mathematical presentation is often almost
unreadable, whereas an excessively slack and lacunar presentation is of course useless.

Keijo Ruohonen

Chapter 1

Definitions and Fundamental Concepts

1.1 Definitions

Conceptually, agraph is formed byverticesandedgesconnecting the vertices.

Example.

Formally, a graph is a pair of sets(V,E), whereV is theset of verticesandE is theset of
edges, formed by pairs of vertices.E is amultiset, in other words, its elements can occur more
than once so that every element has amultiplicity. Often, we label the vertices with letters (for
example:a, b, c, . . . or v1, v2, . . .) or numbers1, 2, . . . Throughout this lecture material, we will
label the elements ofV in this way.

Example. (Continuing from the previous example) We label the vertices as follows:

v2 v3

v1

v4

v5

We haveV = {v1, . . . , v5} for the vertices andE = {(v1, v2), (v2, v5), (v5, v5), (v5, v4), (v5, v4)}
for the edges.

Similarly, we often label the edges with letters (for example: a, b, c, . . . or e1, e2, . . .) or num-
bers1, 2, . . . for simplicity.

1

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 2

Remark. The two edges(u, v) and(v, u) are the same. In other words, the pair is notordered.

Example. (Continuing from the previous example) We label the edges asfollows:

v2 v3

v1

v4

v5
e1

e2

e3

e4 e5

SoE = {e1, . . . , e5}.

We have the following terminologies:

1. The two verticesu andv areend verticesof the edge(u, v).

2. Edges that have the same end vertices areparallel.

3. An edge of the form(v, v) is a loop.

4. A graph issimpleif it has no parallel edges or loops.

5. A graph with no edges (i.e.E is empty) isempty.

6. A graph with no vertices (i.e.V andE are empty) is anull graph.

7. A graph with only one vertex istrivial .

8. Edges areadjacentif they share a common end vertex.

9. Two verticesu andv areadjacentif they are connected by an edge, in other words,(u, v)
is an edge.

10. Thedegreeof the vertexv, written asd(v), is the number of edges withv as an end vertex.
By convention, we count a loop twice and parallel edges contribute separately.

11. A pendant vertexis a vertex whose degree is1.

12. An edge that has a pendant vertex as an end vertex is apendant edge.

13. An isolated vertexis a vertex whose degree is0.

Example. (Continuing from the previous example)

• v4 andv5 are end vertices ofe5.

• e4 ande5 are parallel.

• e3 is a loop.

• The graph is not simple.

• e1 ande2 are adjacent.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 3

• v1 andv2 are adjacent.

• The degree ofv1 is 1 so it is a pendant vertex.

• e1 is a pendant edge.

• The degree ofv5 is 5.

• The degree ofv4 is 2.

• The degree ofv3 is 0 so it is an isolated vertex.

In the future, we will label graphs with letters, for example:

G = (V,E).

Theminimum degreeof the vertices in a graphG is denotedδ(G) (= 0 if there is an isolated
vertex inG). Similarly, we write∆(G) as themaximum degreeof vertices inG.

Example. (Continuing from the previous example)δ(G) = 0 and∆(G) = 5.

Remark. In this course, we only considerfinite graphs, i.e.V andE are finite sets.

Since every edge has two end vertices, we get

Theorem 1.1.The graphG = (V,E), whereV = {v1, . . . , vn} andE = {e1, . . . , em}, satisfies

n
∑

i=1

d(vi) = 2m.

Corollary. Every graph has an even number of vertices of odd degree.

Proof. If the verticesv1, . . . , vk have odd degrees and the verticesvk+1, . . . , vn have even de-
grees, then (Theorem 1.1)

d(v1) + · · ·+ d(vk) = 2m− d(vk+1)− · · · − d(vn)

is even. Therefore,k is even.

Example. (Continuing from the previous example) Now the sum of the degrees is1 + 2 + 0 +
2 + 5 = 10 = 2 · 5. There are two vertices of odd degree, namelyv1 andv5.

A simple graph that contains every possible edge between allthe vertices is called acomplete
graph. A complete graph withn vertices is denoted asKn. The first four complete graphs are
given as examples:

K1 K2
K3 K4

The graphG1 = (V1, E1) is asubgraphof G2 = (V2, E2) if

1. V1 ⊆ V2 and

2. Every edge ofG1 is also an edge ofG2.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 4

Example. We have the graph

G2:

e1

v1

v2

e2

e3 v3

e4

v4

e5

v5

e6

and some of its subgraphs are

G1:

e1

v1

v2

G1:

e1

v1

v2

e2

v3

e4

v4

e5

v5

e6

G1:

v1

v2

v3

e5

v5

e6

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 5

and

G1:
v5

e6

Thesubgraph ofG = (V,E) induced by the edge setE1 ⊆ E is:

G1 = (V1, E1) =def. 〈E1〉,

whereV1 consists of every end vertex of the edges inE1.

Example. (Continuing from above) From the original graphG, the edgese2, e3 ande5 induce
the subgraph

〈e2,e3,e5〉:

v1

v2

e2

e3 v3

e5

v5

Thesubgraph ofG = (V,E) induced by the vertex setV1 ⊆ V is:

G1 = (V1, E1) =def. 〈V1〉,

whereE1 consists of every edge between the vertices inV1.

Example. (Continuing from the previous example) From the original graphG, the verticesv1,
v3 andv5 induce the subgraph

v1 e3 v3

e5

v5

e6

〈v1,v3,v5〉:

A complete subgraph ofG is called acliqueof G.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 6

1.2 Walks, Trails, Paths, Circuits, Connectivity, Components

Remark. There are many different variations of the following terminologies. We will adhere to
the definitions given here.

A walk in the graphG = (V,E) is a finite sequence of the form

vi0 , ej1 , vi1, ej2, . . . , ejk , vik ,

which consists of alternating vertices and edges ofG. The walk starts at a vertex. Verticesvit−1

andvit are end vertices ofejt (t = 1, . . . , k). vi0 is the initial vertex andvik is the terminal
vertex. k is thelengthof the walk. A zero length walk is just a single vertexvi0 . It is allowed to
visit a vertex or go through an edge more than once. A walk isopenif vi0 6= vik . Otherwise it
is closed.

Example. In the graph

v6

G: v1

e10
e9

e8

e1

v2

e7

e2

v5 e6

e5

v4

v3

e3

e4

the walk
v2, e7, v5, e8, v1, e8, v5, e6, v4, e5, v4, e5, v4

is open. On the other hand, the walk

v4, e5, v4, e3, v3, e2, v2, e7, v5, e6, v4

is closed.

A walk is a trail if any edge is traversed at most once. Then, the number of times that the
vertex pairu, v can appear as consecutive vertices in a trail is at most the number of parallel
edges connectingu andv.

Example. (Continuing from the previous example) The walk in the graph

v1, e8, v5, e9, v1, e1, v2, e7, v5, e6, v4, e5, v4, e4, v4

is a trail.

A trail is a path if any vertex is visited at most once except possibly the initial and terminal
vertices when they are the same. A closed path is acircuit. For simplicity, we will assume in
the future that a circuit is not empty, i.e. its length≥ 1. We identify the paths and circuits with
the subgraphs induced by their edges.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 7

Example. (Continuing from the previous example) The walk

v2, e7, v5, e6, v4, e3, v3

is a path and the walk
v2, e7, v5, e6, v4, e3, v3, e2, v2

is a circuit.

The walk starting atu and ending atv is called anu–v walk. u andv areconnectedif there
is au–v walk in the graph (then there is also au–v path!). Ifu andv are connected andv andw
are connected, thenu andw are also connected, i.e. if there is au–v walk and av–w walk, then
there is also au–w walk. A graph isconnectedif all the vertices are connected to each other.
(A trivial graph is connected by convention.)

Example. The graph

is not connected.

The subgraphG1 (not a null graph) of the graphG is acomponentof G if

1. G1 is connected and

2. EitherG1 is trivial (one single isolated vertex ofG) or G1 is not trivial andG1 is the
subgraph induced by those edges ofG that have one end vertex inG1.

Different components of the same graph do not have any commonvertices because of the fol-
lowing theorem.

Theorem 1.2. If the graphG has a vertexv that is connected to a vertex of the componentG1

ofG, thenv is also a vertex ofG1.

Proof. If v is connected to vertexv′ of G1, then there is a walk inG

v = vi0 , ej1, vi1 , . . . , vik−1
, ejk , vik = v′.

Sincev′ is a vertex ofG1, then (condition #2 above)ejk is an edge ofG1 andvik−1
is a vertex

of G1. We continue this process and see thatv is a vertex ofG1.

Example.

G:

v1

v3

v2

e1 e2
v4 e3

e5

v6

e4

v5

e6

v7

e7

v8G1 G2 G3 G4

The components ofG areG1, G2, G3 andG4.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 8

Theorem 1.3.Every vertex ofG belongs to exactly one component ofG. Similarly, every edge
ofG belongs to exactly one component ofG.

Proof. We choose a vertexv in G. We do the following as many times as possible starting with
V1 = {v}:

(∗) If v′ is a vertex ofG such thatv′ /∈ V1 andv′ is connected to some vertex ofV1, then
V1 ← V1 ∪ {v

′}.

Since there is a finite number of vertices inG, the process stops eventually. The lastV1 induces a
subgraphG1 of G that is the component ofG containingv. G1 is connected because its vertices
are connected tov so they are also connected to each other. Condition #2 holds because we can
not repeat(∗). By Theorem 1.2,v does not belong to any other component.

The edges of the graph are incident to the end vertices of the components.

Theorem 1.3 divides a graph into distinct components. The proof of the theorem gives an
algorithm to do that. We have to repeat what we did in the proofas long as we have free
vertices that do not belong to any component. Every isolatedvertex forms its own component.
A connected graph has only one component, namely, itself.

A graphG with n vertices,m edges andk components has therank

ρ(G) = n− k.

Thenullity of the graph is
µ(G) = m− n+ k.

We see thatρ(G) ≥ 0 andρ(G) + µ(G) = m. In addition,µ(G) ≥ 0 because

Theorem 1.4.ρ(G) ≤ m

Proof. We will use the second principle of induction (strong induction) form.
Induction Basis: m = 0. The components are trivial andn = k.
Induction Hypothesis: The theorem is true form < p. (p ≥ 1)
Induction Statement: The theorem is true form = p.
Induction Statement Proof: We choose a componentG1 of G which has at least one edge.

We label that edgee and the end verticesu andv. We also labelG2 as the subgraph ofG and
G1, obtained by removing the edgee fromG1 (but not the verticesu andv). We labelG′ as the
graph obtained by removing the edgee from G (but not the verticesu andv) and letk′ be the
number of components ofG′. We have two cases:

1. G2 is connected. Then,k′ = k. We use the Induction Hypothesis onG′:

n− k = n− k′ = ρ(G′) ≤ m− 1 < m.

2. G2 is not connected. Then there is only one path betweenu andv:

u, e, v

and no other path. Thus, there are two components inG2 andk′ = k + 1. We use the
Induction Hypothesis onG′:

ρ(G′) = n− k′ = n− k − 1 ≤ m− 1.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 9

Hencen− k ≤ m.

These kind of combinatorial results have many consequences. For example:

Theorem 1.5. If G is a connected graph andk ≥ 2 is the maximum path length, then any two
paths inG with lengthk share at least one common vertex.

Proof. We only consider the case where the paths are not circuits (Other cases can be proven in
a similar way.). Consider two paths ofG with lengthk:

vi0, ej1 , vi1, ej2, . . . , ejk , vik (pathp1)

and
vi′

0
, ej′

1
, vi′

1
, ej′

2
, . . . , ej′

k
, vi′

k
(pathp2).

Let us consider the counter hypothesis: The pathsp1 andp2 do not share a common vertex.
SinceG is connected, there exists anvi0–vi′k path. We then find the last vertex on this path
which is also onp1 (at leastvi0 is onp1) and we label that vertexvit . We find the first vertex of
thevit–vi′k path which is also onp2 (at leastvi′

k
is onp2) and we label that vertexvi′s . So we get

avit–vi′s path
vit , ej′′1 , . . . , ej′′ℓ , vi′s.

The situation is as follows:

vi0 , ej1, vi1 , . . . ,vit , ejt+1
, . . . , ejk , vik

ej′′
1

...

ej′′
ℓ

vi′
0
, ej′

1
, vi′

1
, . . . ,vi′s, ej′s+1

, . . . , ej′
k
, vi′

k

From here we get two paths:vi0–vi′k path andvi′
0
–vik path. The two cases are:

• t ≥ s: Now the length of thevi0–vi′k path is≥ k + 1.
√ 1

• t < s: Now the length of thevi′
0
–vik path is≥ k + 1.

√

A graph iscircuitlessif it does not have any circuit in it.

Theorem 1.6. A graph is circuitless exactly when there are no loops and there is at most one
path between any two given vertices.

Proof. First let us assumeG is circuitless. Then, there are no loops inG. Let us assume the
counter hypothesis: There are two different paths between distinct verticesu andv in G:

u = vi0 , ej1, vi1 , ej2, . . . , ejk , vik = v (pathp1)

and
u = vi′

0
, ej′

1
, vi′

1
, ej′

2
, . . . , ej′

ℓ
, vi′

ℓ
= v (pathp2)

(here we havei0 = i′0 andik = i′ℓ), wherek ≥ ℓ. We choose the smallest indext such that

vit 6= vi′
t
.

There is such at because otherwise
1From now on, the symbol

√

means contradiction. If we get a contradiction by proceeding from the assump-
tions, the hypothesis must be wrong.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 10

1. k > ℓ andvik = v = vi′
ℓ
= viℓ (

√

) or

2. k = ℓ andvi0 = vi′
0
, . . . , viℓ = vi′

ℓ
. Then, there would be two parallel edges between two

consecutive vertices in the path. That would imply the existence of a circuit between two
vertices inG.

√

u
v

v vit–1 is

p1

p2

We choose the smallest indexs such thats ≥ t andvis is in the pathp2 (at leastvik is in p2). We
choose an indexr such thatr ≥ t andvi′r = vis (it exists becausep1 is a path). Then,

vit−1
, ejt, . . . , ejs, vis(= vi′r), ej′r , . . . , ej′t, vi′t−1

(= vit−1
)

is a circuit.
√

(Verify the caset = s = r.)
Let us prove the reverse implication. If the graph does not have any loops and no two distinct

vertices have two different paths between them, then there is no circuit. For example, if

vi0 , ej1 , vi1, ej2, . . . , ejk , vik = vi0

is a circuit, then eitherk = 1 andej1 is a loop (
√

), or k ≥ 2 and the two verticesvi0 andvi1
are connected by two distinct paths

vi0 , ej1, vi1 and vi1 , ej2, . . . , ejk , vik = vi0 (
√

).

1.3 Graph Operations

Thecomplementof the simple graphG = (V,E) is the simple graphG = (V,E), where the
edges inE are exactly the edges not inG.

Example.

v2

v1

v3

v4

v5
G:

v2

v1

v3

v4

v5
G:
_

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 11

Example. The complement of the complete graphKn is the empty graph withn vertices.

Obviously,G = G. If the graphsG = (V,E) andG′ = (V ′, E ′) are simple andV ′ ⊆ V , then
thedifferencegraph isG − G′ = (V,E ′′), whereE ′′ contains those edges fromG that are not
in G′ (simple graph).

Example.

G: G':

G – G':

Here are some binary operations between two simple graphsG1 = (V1, E1) andG2 =
(V2, E2):

• Theunion isG1 ∪G2 = (V1 ∪ V2, E1 ∪ E2) (simple graph).

• The intersectionisG1 ∩G2 = (V1 ∩ V2, E1 ∩ E2) (simple graph).

• Thering sumG1⊕G2 is the subgraph ofG1∪G2 induced by the edge setE1⊕E2 (simple
graph).Note! The set operation⊕ is thesymmetric difference, i.e.

E1 ⊕E2 = (E1 −E2) ∪ (E2 − E1).

Since the ring sum is a subgraph induced by an edge set, there are no isolated vertices. All three
operations are commutative and associative.

Example. For the graphs

G1: G2:

v1 v2

v5

v3 v4

v1

v3

v6

v7

e1

e2
e3 e5

e4

e1

e7

e6

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 12

we have

v6

v7

e7

e6

v1 v2

v5

v3 v4

e1

e2
e3 e5

e4

G1 ∪ G2:

G1 ∩ G2:

v1

v3

e1

v6

e6

G1 ⊕ G2:

v1 v2

v3 v4

e2
e3 e5

e4

e7

Remark. The operations∪, ∩ and⊕ can also be defined for more general graphs other than
simple graphs. Naturally, we have to ”keep track” of the multiplicity of the edges:

∪ : The multiplicity of an edge inG1 ∪G2 is the larger of its multiplicities inG1 andG2.

∩ : The multiplicity of an edge inG1 ∩G2 is the smaller of its multiplicities inG1 andG2.

⊕ : The multiplicity of an edge inG1 ⊕ G2 is |m1 −m2|, wherem1 is its multiplicity inG1

andm2 is its multiplicity inG2.

(We assume zero multiplicity for the absence of an edge.) In addition, we can generalize the dif-
ference operation for all kinds of graphs if we take account of the multiplicity. The multiplicity
of the edgee in the differenceG−G′ is

m1 −̇m2 =

{

m1 −m2, if m1 ≥ m2

0, if m1 < m2

(also known as theproper difference),

wherem1 andm2 are the multiplicities ofe in G1 andG2, respectively.

If v is a vertex of the graphG = (V,E), thenG − v is the subgraph ofG induced by the
vertex setV − {v}. We call this operation theremoval of a vertex.

Example. (Continuing from the previous example)

G1 – v4:

v1

v5

v3

e1
e3

v2

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 13

Similarly, if e is an edge of the graphG = (V,E), thenG − e is graph(V,E ′), whereE ′ is
obtained by removinge from E. This operation is known asremoval of an edge. We remark
that we are not talking about removing an edge as in Set Theory, because the edge can have
nonunit multiplicity and we only remove the edge once.

Example. (Continuing from the previous example)

G1 – e5:

v1 v2

v5

v3 v4

e1

e2
e3

e4

If u andv are two distinct vertices of the graphG = (V,E), then we canshort-circuit the
two verticesu andv and obtain the graph(V ′, E ′), where

V ′ = (V − {u, v}) ∪ {w} (w /∈ V is the ”new” vertex)

and

E ′ = (E − {(v′, u), (v′, v) | v′ ∈ V }) ∪ {(v′, w) | (v′, u) ∈ E or (v′, v) ∈ E}

∪ {(w,w) | (u, u) ∈ E or (v, v) ∈ E}

(Recall that the pair of vertices corresponding to an edge isnot ordered).Note! We have to
maintain the multiplicity of the edges. In particular, the edge(u, v) becomes a loop.

Example. (Continuing from the previous example) Short-circuitv3 andv4 in the graphG1:

v1 v2
v5

w

In the graphG = (V,E), contractingthe edgee = (u, v) (not a loop) means the operation in
which we first removee and then short-circuitu andv. (Contracting a loop simply removes that
loop.)

Example. (Continuing from the previous example) We contract the edgee3 in G1 by first re-
movinge3 and then short-circuitingv2 andv3.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 14

v1 v2
v5

v3 v4

e1

e2

e5

e4

v1

v5

w v4

e2

Remark. If we restrict short-circuiting and contracting to simple graphs, then we remove loops
and all but one of the parallel edges between end vertices from the results.

1.4 Cuts

A vertexv of a graphG is acut vertexor anarticulation vertexof G if the graphG− v consists
of a greater number of components thanG.

Example. v is a cut vertex of the graph below:

cut vertex

G: G – v:
v

(Note! Generally, the only vertex of a trivial graph is not a cut vertex, neither is an isolated
vertex.)

A graph isseparableif it is not connected or if there exists at least one cut vertex in the
graph. Otherwise, the graph isnonseparable.

Example. The graphG in the previous example is separable.

Example. The graph below is nonseparable.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 15

A blockof the graphG is a subgraphG1 of G (not a null graph) such that

• G1 is nonseparable, and

• if G2 is any other subgraph ofG, thenG1∪G2 = G1 orG1∪G2 is separable (think about
that!).

Example. The graph below is separable:

cut vertex

Theorem 1.7. The vertexv is a cut vertex of the connected graphG if and only if there exist
two verticesu andw in the graphG such that

(i) v 6= u, v 6= w andu 6= w, but

(ii) v is on everyu–w path.

Proof. First, let us consider the case thatv is a cut-vertex ofG. Then,G − v is not connected
and there are at least two componentsG1 = (V1, E1) andG2 = (V2, E2). We chooseu ∈ V1

andw ∈ V2. Theu–w path is inG because it is connected. Ifv is not on this path, then the path
is also inG− v (

√

). The same reasoning can be used for all theu–w paths inG.
If v is in everyu–w path, then the verticesu andw are not connected inG− v.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 16

Theorem 1.8.A nontrivial simple graph has at least two vertices which arenot cut vertices.

Proof. We will use induction for the graphG with n vertices.
Induction Basis: The casen = 2 is obviously true.
Induction Hypothesis: The theorem is true forn ≤ k. (k ≥ 2)
Induction Statement: The theorem is true forn = k + 1.
Induction Statement Proof: If there are no cut vertices inG, then it is obvious. Otherwise,

we consider a cut vertexv of G. Let G1, . . . , Gm be the components ofG − v (som ≥ 2).
Every componentGi falls into one of the two cases:

1. Gi is trivial so the only vertex ofGi is a pendant vertex or an isolated vertex ofG but it is
not a cut vertex ofG.

2. Gi is not trivial. The Induction Hypothesis tells us that thereexist two verticesu andw
in Gi which are not cut vertices ofGi. If v andu (respectivelyv andw) are not adjacent
in G, thenu (respectivelyw) is not a cut vertex inG. If both v andu as well asu andw
are adjacent inG, thenu andw can not be cut vertices ofG.

A cut setof the connected graphG = (V,E) is an edge setF ⊆ E such that

1. G− F (remove the edges ofF one by one) is not connected, and

2. G−H is connected wheneverH ⊂ F .

Theorem 1.9. If F is a cut set of the connected graphG, thenG− F has two components.

Proof. LetF = {e1, . . . , ek}. The graphG−{e1, . . . , ek−1} is connected (and so isG if k = 1)
by condition #2. When we remove the edges from the connected graph, we get at most two
components.

Example. In the graph

v1

e1

v2

e4 v3

e3

e2

e5

e6

v4

e7

e8 v6

v5

{e1, e4}, {e6, e7}, {e1, e2, e3}, {e8}, {e3, e4, e5, e6}, {e2, e5, e7}, {e2, e5, e6} and{e2, e3, e4} are
cut sets. Are there other cut sets?

In a graphG = (V,E), a pair of subsetsV1 andV2 of V satisfying

V = V1 ∪ V2 , V1 ∩ V2 = ∅ , V1 6= ∅ , V2 6= ∅,

is called acut (or apartition) of G, denoted〈V1, V2〉. Usually, the cuts〈V1, V2〉 and〈V2, V1〉 are
considered to be the same.

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 17

Example. (Continuing from the previous example)〈{v1, v2, v3}, {v4, v5, v6}〉 is a cut.

We can also think of a cut as an edge set:

cut 〈V1, V2〉 = {those edges with one end vertex inV1 and the other end vertex inV2}.

(Note! This edge set does not defineV1 andV2 uniquely so we can not use this for the definition
of a cut.)

Using the previous definitions and concepts, we can easily prove the following:

1. The cut〈V1, V2〉 of a connectedgraphG (considered as an edge set) is a cut set if and
only if the subgraphs induced byV1 andV2 are connected, i.e.G − 〈V1, V2〉 has two
components.

2. If F is a cut set of the connectedgraphG andV1 andV2 are the vertex sets of the two
components ofG− F , then〈V1, V2〉 is a cut andF = 〈V1, V2〉.

3. If v is a vertex of a connected(nontrivial) graphG = (V,E), then〈{v}, V −{v}〉 is a cut
of G. It follows that the cut is a cut set if the subgraph (i.e.G − v) induced byV − {v}
is connected, i.e. ifv is not a cut vertex.

If there exists a cut〈V1, V2〉 for the graphG = (V,E) so thatE = 〈V1, V2〉, i.e. the cut
(considered as an edge set) includes every edge, then the graphG is bipartite.

Example. The graph

v1

v2

v3

v4

v5

v6

v7

is bipartite.V1 = {v1, v2, v3} andV2 = {v4, v5, v6, v7}.

A simple bipartite graph is called acomplete bipartite graphif we can not possibly add any
more edges to the edge set〈V1, V2〉, i.e. the graph contains exactly all edges that have one end
vertex inV1 and the other end vertex inV2. If there aren vertices inV1 andm vertices inV2, we
denote it asKn,m (cf. complete graph).

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 18

Example.

K1,1: K1,2: K2,1:

K2,3:

(UsuallyKn,m andKm,n are considered to be the same.)

1.5 Labeled Graphs and Isomorphism

By a labeling of the verticesof the graphG = (V,E), we mean a mappingα : V → A, where
A is called thelabelset. Similarly, alabeling of the edgesis a mappingβ : E → B, whereB is
the label set. Often, these labels are numbers. Then, we callthemweightsof vertices and edges.
In a weighted graph, the weight of a path is the sum of the weights of the edges traversed.

The labeling of the vertices (respectively edges) isinjectiveif distinct vertices (respectively
edges) have distinct labels. An injective labeling isbijective if there are as many labels inA
(respectively inB) as the number of vertices (respectively edges).

Example. If A = {0, 1} andB = R, then in the graph,

0

1

1

0
0

1

0.1

0.4

0.7
0.6

0.2

the labeling of the edges (weights) is injective but not the labeling of the vertices.

The two graphsG1 = (V1, E1) andG2 = (V2, E2) areisomorphicif labeling the vertices of
G1 bijectively with the elements ofV2 givesG2. (Note! We have to maintain the multiplicity of
the edges.)

CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 19

Example. The graphsG1 andG2 are isomorphic and the vertex labelingvi 7→ v′i and edge
labelingej 7→ e′j define the isomorphism.

G1:

v1

v2

v3
e1 e5

v4

v5

e3 e6

e2

v7

e9

e7

v6

v8

e8

e10

e4

G2:

v'
v'

e'

e'

e'

v' v'

v' e'

v'

e' e' e'

e'

v'

v'

e'
8

8

9

e'10 6

7

5

5

4

4

2

7 2

1
3

1

36

Determining whether or not two graphs are isomorphic is a well researched2 problem. It
differs significantly from other problems in graph theory and network analysis. In addition,
it has a lot to do with group theory in algebra. The problem is important in the theory of
Computational Complexity. For example, refer to KÖBLER, J. & SCHÖNING, U. & TORÁN,
J.: The Graph Isomorphism Problem. Its Structural Complexity.Birkhäuser (1993).

2Maybe too well, cf. READ, R.C. & CORNEIL, D.G.: The Graph Isomorphism Disease.Journal of Graph
Theory1 (1977), 339–363.

Chapter 2

Trees

2.1 Trees and Forests

A forestis a circuitless graph. Atreeis a connected forest. Asubforestis a subgraph of a forest.
A connected subgraph of a tree is asubtree. Generally speaking, a subforest (respectively
subtree) of a graph is its subgraph, which is also a forest (respectively tree).

Example. Four trees which together form a forest:

A spanning treeof a connectedgraph is a subtree that includes all the vertices of that graph. If
T is a spanning tree of the graphG, then

G− T =def. T
∗

is thecospanning tree.

Example.

G: spanning tree:

20

CHAPTER 2. TREES 21

cospanning tree

The edges of a spanning tree are calledbranchesand the edges of the corresponding cospanning
tree are calledlinksor chords.

Theorem 2.1. If the graphG hasn vertices andm edges, then the following statements are
equivalent:

(i) G is a tree.

(ii) There is exactly one path between any two vertices inG andG has no loops.

(iii) G is connected andm = n− 1.

(iv) G is circuitless andm = n− 1.

(v) G is circuitless and if we add any new edge toG, then we will get one and only one circuit.

Proof. (i)⇒(ii): If G is a tree, then it is connected and circuitless. Thus, there are no loops in
G. There exists a path between any two vertices ofG. By Theorem 1.6, we know that there is
only one such path.

(ii)⇒(iii): G is connected. Let us use induction onm.
Induction Basis: m = 0, G is trivial and the statement is obvious.
Induction Hypothesis: m = n− 1 whenm ≤ ℓ. (ℓ ≥ 0)
Induction Statement: m = n− 1 whenm = ℓ+ 1.
Induction Statement Proof: Let e be an edge inG. ThenG − e hasℓ edges. IfG − e is

connected, then there exist two different paths between theend vertices ofe so (ii) is false.
Therefore,G− e has two componentsG1 andG2. Let there ben1 vertices andm1 edges inG1.
Similarly, let there ben2 vertices andm2 vertices inG2. Then,

n = n1 + n2 and m = m1 +m2 + 1.

The Induction Hypothesis states that

m1 = n1 − 1 and m2 = n2 − 1,

som = n1 + n2 − 1 = n− 1.
(iii)⇒(iv): Consider the counter hypothesis: There is a circuit inG. Let e be some edge in

that circuit. Thus, there aren vertices andn− 2 edges in the connected graphG− e.
√ 1

(iv)⇒(v): If G is circuitless, then there is at most one path between any twovertices (The-
orem 1.6). IfG has more than one component, then we will not get a circuit when we draw an
edge between two different components. By adding edges, we can connect components without
creating circuits:

1In a connected graph withn vertices, there are at leastn− 1 edges. (Theorem 1.4)

CHAPTER 2. TREES 22

1st component 2nd component
3rd
component

4th
component

If we addk(≥ 1) edges, then (because (i)⇒(iii))

m+ k = n− 1 (
√

becausem = n− 1).

SoG is connected. When we add an edge between vertices that are not adjacent, we get only
one circuit. Otherwise, we can remove an edge from one circuit so that other circuits will not
be affected and the graph stays connected, in contradictionto (iii)⇒(iv). Similarly, if we add a
parallel edge or a loop, we get exactly one circuit.

(v)⇒(i): Consider the counter hypothesis: G is not a tree, i.e. it is not connected. When we
add edges as we did previously, we do not create any circuits (see figure).

√

Since spanning trees are trees, Theorem 2.1 is also true for spanning trees.

Theorem 2.2.A connected graph has at least one spanning tree.

Proof. Consider the connected graphG with n vertices andm edges. Ifm = n − 1, thenG
is a tree. SinceG is connected,m ≥ n − 1 (Theorem 1.4). We still have to consider the case
m ≥ n, where there is a circuit inG. We remove an edgee from that circuit.G − e is now
connected. We repeat until there aren− 1 edges. Then, we are left with a tree.

Remark. We can get a spanning tree of a connected graph by starting from an arbitrary sub-
forestM (as we did previously). Since there is no circuit whose edgesare all in M , we can
remove those edges from the circuit which are not inM .

By Theorem 2.1, the subgraphG1 of G with n vertices is a spanning tree ofG (thusG is
connected) if any three of the following four conditions hold:

1. G1 hasn vertices.

2. G1 is connected.

3. G1 hasn− 1 edges.

4. G1 is circuitless.

Actually, conditions #3 and #4 are enough to guarantee thatG1 is a spanning tree. If conditions
#3 and #4 hold butG1 is not connected, then the components ofG1 are trees and the number of
edges inG1 would be

number of vertices− number of components< n− 1 (
√

).

CHAPTER 2. TREES 23

Theorem 2.3. If a tree is not trivial, then there are at least two pendant vertices.

Proof. If a tree hasn(≥ 2) vertices, then the sum of the degrees is2(n − 1). If every vertex
has a degree≥ 2, then the sum will be≥ 2n (

√

). On the other hand, if all but one vertex have
degree≥ 2, then the sum would be≥ 1 + 2(n − 1) = 2n − 1 (

√

). (This also follows from
Theorem 1.8 because a cut vertex of a tree is not a pendant vertex!)

A forest withk components is sometimes called ak-tree. (So a1-tree is a tree.)

Example.

4-tree:

We use Theorem 2.1 to see that a graph withk components has aspanningk-tree, also known
as aspanning forest, which hask components.

2.2 (Fundamental) Circuits and (Fundamental) Cut Sets

If the branches of the spanning treeT of a connected graphG areb1, . . . , bn−1 and the corre-
sponding links of the cospanning treeT ∗ arec1, . . . , cm−n+1, then there exists one and only one
circuit Ci in T + ci (which is the subgraph ofG induced by the branches ofT andci) (The-
orem 2.1). We call this circuit afundamental circuit. Every spanning tree definesm − n + 1
fundamental circuitsC1, . . . , Cm−n+1, which together form afundamental set of circuits. Every
fundamental circuit has exactly one link which is not in any other fundamental circuit in the
fundamental set of circuits. Therefore, we can not write anyfundamental circuit as a ring sum
of other fundamental circuits in the same set. In other words, the fundamental set of circuits is
linearly independent under the ring sum operation.

Example.

G:

T: T*:

c1
c2 c3

CHAPTER 2. TREES 24

C1 C2
C3

The graphT − bi has two componentsT1 andT2. The corresponding vertex sets areV1 and
V2. Then,〈V1, V2〉 is a cut ofG. It is also a cut set ofG if we treat it as an edge set because
G − 〈V1, V2〉 has two components (result #1 p. 17). Thus, every branchbi of T has a corre-
sponding cut setIi. The cut setsI1, . . . , In−1 are also known asfundamental cut setsand they
form afundamental set of cut sets. Every fundamental cut set includes exactly one branch ofT
and every branch ofT belongs to exactly one fundamental cut set. Therefore, every spanning
tree defines a unique fundamental set of cut sets forG.

Example. (Continuing from the previous example) The graph

G: e2

e1

e4

e3

e5

e6

e7

e8

has the spanning tree

T:

b1

b2

b3

b4

b5

that defines these fundamental cut sets:

b1 : {e1, e2} b2 : {e2, e3, e4} b3 : {e2, e4, e5, e6}
b4 : {e2, e4, e5, e7} b5 : {e8}

Next, we consider some properties of circuits and cut sets:

(a) Every cut set of a connected graphG includes at least one branch from every spanning
tree ofG. (Counter hypothesis: Some cut setF of G does not include any branches of a
spanning treeT . Then,T is a subgraph ofG− F andG− F is connected.

√

)

(b) Every circuit of a connected graphG includes at least one link from every cospanning tree
of G. (Counter hypothesis: Some circuitC of G does not include any link of a cospanning
treeT ∗. Then,T = G− T ∗ has a circuit andT is not a tree.

√

)

CHAPTER 2. TREES 25

Theorem 2.4.The edge setF of the connected graphG is a cut set ofG if and only if

(i) F includes at least one branch from every spanning tree ofG, and

(ii) if H ⊂ F , then there is a spanning tree none of whose branches is inH.

Proof. Let us first consider the case whereF is a cut set. Then, (i) is true (previous proposition
(a)). If H ⊂ F thenG −H is connected and has a spanning treeT . ThisT is also a spanning
tree ofG. Hence, (ii) is true.

Let us next consider the case where both (i) and (ii) are true.ThenG− F is disconnected.
If H ⊂ F there is a spanning treeT none of whose branches is inH. ThusT is a subgraph of
G−H andG−H is connected. Hence,F is a cut set.

Similarly:

Theorem 2.5.The subgraphC of the connected graphG is a circuit if and only if

(i) C includes at least one link from every cospanning tree ofG, and

(ii) if D is a subgraph ofC andD 6= C, then there exists a cospanning tree none of whose
links is inD.

Proof. Let us first consider the case whereC is a circuit. Then,C includes at least one link
from every cospanning tree (property (b) above) so (i) is true. If D is a proper subgraph ofC,
it obviously does not contain circuits, i.e. it is a forest. We can then supplementD so that it is
a spanning tree ofG (see remark on p. 22), i.e. some spanning treeT of G includesD andD
does not include any link ofT ∗. Thus, (ii) is true.

Now we consider the case where (i) and (ii) are both true. Then, there has to be at least one
circuit in C becauseC is otherwise a forest and we can supplement it so that it is a spanning
tree ofG (see remark on p. 22). We take a circuitC ′ in C. Since (ii) is true,C ′ 6= C is not
true, becauseC ′ is a circuit and it includes a link from every cospanning tree(see property (b)
above). Therefore,C = C ′ is a circuit.

Theorem 2.6. A circuit and a cut set of a connected graph have an even numberof common
edges.

Proof. We choose a circuitC and a cut setF of the connected graphG. G − F has two
componentsG1 = (V1, E1) andG2 = (V2, E2). If C is a subgraph ofG1 or G2, then the
theorem is obvious because they have no common edges. Let us assume thatC andF have
common edges. We traverse around a circuit by starting at some vertexv of G1. Since we come
back tov, there has to be an even number of edges of the cut〈V1, V2〉 in C.

The reader is advised to read the following several times:

Theorem 2.7. A fundamental circuit corresponding to linkc of the cospanning treeT ∗ of a
connected graph is formed exactly by those branches ofT whose corresponding fundamental
cut set includesc.

Proof. There exists a fundamental circuitC that corresponds to linkc of T ∗. The other edges
b1, . . . , bk of C are branches ofT . We denoteIi as the fundamental cut set that corresponds to
branchbi. Then,bi is the only branch ofT which is in bothC andIi. On the other hand,c is
the only link ofT ∗ in C. By Theorem 2.6, we know that the common edges ofC andIi arebi
andc, in other words,c is an edge ofIi. Then, we show that there is noc in the fundamental cut
setsIk+1, . . . , In−1 that correspond to the branchesbk+1, . . . , bn−1 of T . For instance, ifc were
in Ik+1, then the fundamental cut setIk+1 and the circuitC would have exactly one common
edge. (

√

). Soc is only in the fundamental cut setsI1, . . . , Ik.

CHAPTER 2. TREES 26

The following is the corresponding theorem for fundamentalcut sets:

Theorem 2.8. The fundamental cut set corresponding to branchb of the spanning treeT of a
connected graph consists exactly of those links ofT ∗ whose corresponding fundamental circuit
includesb.

Proof. Let I be a fundamental cut set that corresponds to the branchb of T . Other edges
c1, . . . , ck of I are links ofT ∗. Let Ci denote the fundamental circuit that corresponds toci.
Then,ci is the only link ofT ∗ in bothI andCi. On the other hand,b is the only branch ofT in
I. By Theorem 2.6, the common edges ofI andCi areb andci, in other words,b is an edge of
Ci. Then, we show that the fundamental circuitsCk+1, . . . , Cm−n+1 corresponding to the links
ck+1, . . . , cm−n+1 do not includeb. For example, ifb were inCk+1, then the fundamental circuit
Ck+1 and the cut setI would have exactly one common edge (

√

). Hence, the branchb is only
in fundamental circuitsC1, . . . , Ck.

From the results, we can see the duality between cut sets and circuits of a graph: The
theorems for cut sets can generally be converted to dual theorems for circuits and vice versa.
Usually, we just need to change some of the key terminologiesto their duals in the theorems and
proofs. In particular, we take advantage of this dualism fordealing with matroids (see Chapter
7).

Chapter 3

Directed Graphs

3.1 Definition

Intuitively, a directed graphor digraph is formed by vertices connected bydirected edgesor
arcs.1

Example.

Formally, a digraph is a pair(V,E), whereV is the vertex set andE is the set of vertex pairs as
in ”usual” graphs. The difference is that now the elements ofE are orderedpairs: the arc from
vertexu to vertexv is written as(u, v) and the other pair(v, u) is the opposite direction arc. We
also have to keep track of the multiplicity of the arc (direction of a loop is irrelevant). We can
pretty much use the same notions and results for digraphs from Chapter 1. However:

1. Vertexu is theinitial vertexand vertexv is theterminal vertexof the arc(u, v). We also
say that the arc isincident outof u andincident intov.

2. Theout-degreeof the vertexv is the number of arcs out of it (denotedd+(v)) and the
in-degreeof v is the number of arcs going into it (denotedd−(v)).

3. In thedirected walk(trail, path or circuit),

vi0 , ej1, vi1 , ej2, . . . , ejk , vik

viℓ is the initial vertex andviℓ−1
is the terminal vertex of the arcejℓ. .

4. When we treat the graph(V,E) as a usual undirected graph, it is theunderlying undirected
graphof the digraphG = (V,E), denotedGu.

1This not a standard terminology. We will however call directed edges arcs in the sequel.

27

CHAPTER 3. DIRECTED GRAPHS 28

5. DigraphG is connectedif Gu is connected. Thecomponentsof G are the directed sub-
graphs ofG that correspond to the components ofGu. The vertices ofG are connected if
they are connected inGu. Other notions for undirected graphs can be used for digraphs
as well by dealing with the underlying undirected graph.

6. Verticesu andv arestrongly connectedif there is a directedu–v path and also a directed
v–u path inG.

7. DigraphG is strongly connectedif every pair of vertices is strongly connected. By con-
vention, the trivial graph is strongly connected.

8. A strongly connected componentH of the digraphG is a directed subgraph ofG (not a
null graph) such thatH is strongly connected, but if we add any vertices or arcs to it, then
it is not strongly connected anymore.

Every vertex of the digraphG belongs to one strongly connected component ofG (compare to
Theorem 1.3). However, an arc does not necessarily belong toany strongly connected compo-
nent ofG.

Example. For the digraphG

v1

v2

e1

e9

e2

e3
e5

v4
v6

e6
e8

v5

v3

e4 e7

the strongly connected components are({v1}, ∅), ({v2, v3, v4}, {e3, e4, e5}), ({v5}, ∅) and({v6}, ∅).

The condensed graphGc of the digraphG is obtained by contracting all the arcs in every
strongly connected component.

Example. (Continuing from the previous example) The condensed graphis

v1
e9

v6

e8

v5

w

CHAPTER 3. DIRECTED GRAPHS 29

3.2 Directed Trees

A directed graph isquasi-strongly connectedif one of the following conditions holds for every
pair of verticesu andv:

(i) u = v or

(ii) there is a directedu–v path in the digraph or

(iii) there is a directedv–u path in the digraph or

(iv) there is a vertexw so that there is a directedw–u path and a directedw–v path.

Example. (Continuing from the previous example) The digraphG is quasi-strongly connected.

Quasi-strongly connected digraphs are connected but not necessarily strongly connected.
The vertexv of the digraphG is aroot if there is a directed path fromv to every other vertex

of G.

Example. (Continuing from the previous example) The digraphG only has one root,v1.

Theorem 3.1.A digraph has at least one root if and only if it is quasi-strongly connected.

Proof. If there is a root in the digraph, it follows from the definition that the digraph is quasi-
strongly connected.

Let us consider a quasi-strongly connected digraphG and show that it must have at least
one root. IfG is trivial, then it is obvious. Otherwise, consider the vertex setV = {v1, . . . , vn}
of G wheren ≥ 2. The following process shows that there must be a root:

1. SetP ← V .

2. If there is a directedu–v path between two distinct verticesu andv in P , then we remove
v from P . Equivalently, we setP ← P − {v}. We repeat this step as many times as
possible.

3. If there is only one vertex left inP , then it is the root. For other cases, there are at least
two distinct verticesu andv in P and there is no directed path between them in either
direction. SinceG is quasi-strongly connected, from condition (iv) it follows that there
is a vertexw and a directedw–u path as well as a directedw–v path. Sinceu is in P , w
can not be inP . We removeu andv from P and addw, i.e. we setP ← P − {u, v} and
P ← P ∪ {w}. Go back to step #2.

4. Repeat as many times as possible.

Every time we do this, there are fewer and fewer vertices inP . Eventually, we will get a root
because there is a directed path from some vertex inP to every vertex we removed fromP .

The digraphG is a tree if Gu is a tree. It is adirected treeif Gu is a tree andG is quasi-
strongly connected, i.e. it has a root. Aleaf of a directed tree is a vertex whose out-degree is
zero.

CHAPTER 3. DIRECTED GRAPHS 30

Example.

6
 le

a
ve

s

ro
o

t

Theorem 3.2.For the digraphG with n > 1 vertices, the following are equivalent:

(i) G is a directed tree.

(ii) G is a tree with a vertex from which there is exactly one directed path to every other vertex
ofG.

(iii) G is quasi-strongly connected butG− e is not quasi-strongly connected for any arce in
G.

(iv) G is quasi-strongly connected and every vertex ofG has an in-degree of1 except one
vertex whose in-degree is zero.

(v) There are no circuits inG (i.e. not inGu) and every vertex ofG has an in-degree of1
except one vertex whose in-degree is zero.

(vi) G is quasi-strongly connected and there are no circuits inG (i.e. not inGu).

Proof. (i)⇒(ii): If G is a directed tree, then there is a root. This implies that there is a directed
path from the root to every other vertex inG (but not more than one path sinceGu is a tree).

(ii)⇒(iii): If (ii) is true, then G obviously is quasi-strongly connected. We will prove by
contradiction by considering the counter hypothesis: There is an arce in G such thatG − e is
quasi-strongly connected. The arce is not a loop becauseG is a directed tree. Letu andv be
the two different end vertices ofe. There does not exist a directedu–v path or a directedv–u
path inG− e (otherwiseGu would have a circuit). Therefore, there is a vertexw and a directed
w–u path as well as a directedw–v path. However, this leads to the existence of two directed
w–u paths or two directedw–v paths inG depending on the direction of the arce. Then, there
is a circuit in the treeGu. (

√

by Theorem 1.6).
(iii)⇒(iv): If G quasi-strongly connected, then it has a rootr (Theorem 3.1) so that the in-

degrees of other vertices are≥ 1. We start by considering the counter hypothesis: There exists
a vertexv 6= r andd−(v) > 1. Then,v is the terminal vertex of two distinct arcs(u, v) and
(w, v). If there were a loope in G, thenG− e would be quasi-strongly connected (

√

). Thus,
u 6= v with w 6= v. Now, there are two distinct directed trails fromr to v. The first one includes
(u, v) and the second one includes(w, v). We have two possible cases:

CHAPTER 3. DIRECTED GRAPHS 31

r

u

w

v
r

u

w

v

In the digraph on the left, the pathsr–u and r–w do not include the arcs(u, v) and (w, v).
Both G − (u, v) andG − (w, v) are quasi-strongly connected. In the digraph on the right,
the r–u path includes the arc(w, v) or (as in the figure) ther–w path includes the arc(u, v).
In either case, only one ofG − (u, v) andG − (w, v) is quasi-strongly connected because
the root isr (Theorem 3.1). (

√

) We still have to show thatd−(r) = 0. Let us consider the
counter hypothesis: d−(r) ≥ 1. Then,r is the terminal vertex of some arce. However, the tree
G− e is then quasi-strongly connected sincer is its root (Theorem 3.1). (

√

)
(iv)⇒(v): If (iv) is true, then it is enough to show that there are nocircuits inGu. The sum

of in-degrees of all the vertices inG is n− 1 and the sum of out-degrees of all the vertices inG
is alson− 1, i.e. there aren− 1 arcs inG. SinceG is quasi-strongly connected, it is connected
and it is a tree (Theorem 2.1). Therefore, there are no circuits inGu.

(v)⇒(vi): If we assume that (v) is true, then there aren − 1 arcs inG (compare to the
previous proof). By Theorem 2.1,G is a tree. We denote byr the vertex satisfying condition
(v). By Theorem 2.1, we see that there is exactly one path to any other vertex ofG from r.
These paths are also directed. Otherwise,d−(r) ≥ 1 or the in-degree of some vertex on that
path is> 1 or the in-degree of some other vertex other thanr on that path is zero. Hence,r is a
root andG is quasi-strongly connected (Theorem 3.1).

(vi)⇒(i): If G is quasi-strongly connected, then it has a root (Theorem 3.1). SinceG is
connected and there are no circuits inG, it is a tree.

A directed subgraphT of the digraphG is a directed spanning treeif T is a directed tree
andT includes every vertex ofG.

Example.

G: T:

Theorem 3.3. A digraph has a directed spanning tree if and only if it is quasi-strongly con-
nected.

Proof. If the digraphG has a directed spanning treeT , then the root ofT is also a root forG
and it is quasi-strongly connected (Theorem 3.1).

We now assume thatG is quasi-strongly connected and show that it has a directed spanning
tree. IfG is a directed tree, then it is obvious. Otherwise, from Theorem 3.2, we know that there

CHAPTER 3. DIRECTED GRAPHS 32

is an arce in G so that if we removee, G remains quasi-strongly connected. We systematically
remove these kind of arcs until we get a directed tree. (Compare to the proof for Theorem
2.2)

3.3 Acyclic Directed Graphs

A directed graph with at least one directed circuit is said tobecyclic. A directed graph isacyclic
otherwise. Obviously, directed trees are acyclic but the reverse implication is not true.

Example. The digraph

is acyclic but it is not a directed tree.

Theorem 3.4. In an acyclic digraph, there exist at least onesource(a vertex whose in-degree
is zero) and at least onesink (a vertex whose out-degree is zero).

Proof. Let G be an acyclic digraph. IfG has no arcs, then it is obvious. Otherwise, let us
consider the directed path

vi0 , ej1 , vi1, ej2, . . . , ejk , vik ,

which has the maximum path lengthk. SinceG is acyclic,vi0 6= vik . If (v, vi0) is an arc, then
one of the following is true:

• v 6= vit for every value oft = 0, . . . , k. Then,

v, (v, vi0), vi0 , ej1, vi1 , ej2, . . . , ejk , vik

is a directed path with lengthk + 1.
√

• v = vit for some value oft. We choose the smallest sucht. Then,t > 0 because there are
no loops inG and

vi0 , ej1, vi1 , ej2, . . . , ejt , vit , (v, vi0), vi0

is a directed circuit.
√

Hence,d−(vi0) = 0. Using a similar technique, we can show thatd+(vik) = 0 as well.

If G = (V,E) is a digraph withn vertices, then a labeling of the vertices with an injective
functionα : V → {1, . . . , n} which satisfies the conditionα(u) < α(v) whenever(u, v) is an
arc inG is known astopological sorting.

CHAPTER 3. DIRECTED GRAPHS 33

Theorem 3.5. We can sort the vertices of a digraph topologically if and only if the graph is
acyclic.

Proof. If the digraph is cyclic, then obviously we can not sort the vertices topologically.
If the digraphG is acyclic, then we can sort the vertices in the following manner: 2

1. We choose a vertexv which is a sink. It exists by Theorem 3.4. We setα(v) ← n,
G← G− v andn← n− 1.

2. If there is just one vertexv in G, setα(v)← 1. Otherwise, go back to step #1.

2This is known asMarimont’s Algorithm. The algorithm itself contains other items, too. The original refer-
ence is MARIMONT, R.B.: A New Method of Checking the Consistency of Precedence Matrices.Journal of the
Association for Computing Machinery6 (1959), 164–171.

Chapter 4

Matrices and Vector Spaces of Graphs

4.1 Matrix Representation of Graphs

Theadjacency matrixof the graphG = (V,E) is ann × n matrixD = (dij), wheren is the
number of vertices inG, V = {v1, . . . , vn} and

dij = number of edges betweenvi andvj .

In particular,dij = 0 if (vi, vj) is not an edge inG. The matrixD is symmetric, i.e.DT = D.

Example.

D =













0 2 1 0 0
2 1 0 1 0
1 0 3 0 0
0 1 0 0 0
0 0 0 0 0













v1

v3
v5

v4

v2

Obviously, an adjacency matrix defines a graph completely upto an isomorphism.
The adjacency matrix of a directed graphG is D = (dij), where

dij = number of arcs that come out of vertexvi and go into vertexvj .

Example.

D =









0 1 0 0
1 0 0 0
0 0 0 0
2 1 0 1









v1 v2

v4
v3

Theall-vertex incidence matrixof a non-empty and loopless graphG = (V,E) is ann×m
matrixA = (aij), wheren is the number of vertices inG, m is the number of edges inG and

aij =

{

1 if vi is an end vertex ofej
0 otherwise.

34

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 35

Example.

e1 e2 e3 e4

A =













1 1 1 0
1 1 0 1
0 0 1 0
0 0 0 1
0 0 0 0













v1
v2
v3
v4
v5

v1 v2

v3 v4

v5
e3 e4

e2

e1

The all-vertex incidence matrixof a non-empty and loopless directed graphG is A = (aij),
where

aij =











1 if vi is the initial vertex ofej
−1 if vi is the terminal vertex ofej
0 otherwise.

Example.

e1 e2 e3 e4 e5

A =









1 −1 −1 −1 0
−1 1 0 0 −1
0 0 0 0 0
0 0 1 1 1









v1
v2
v3
v4

v1 v2

v4
v3

e3 e4

e1

e2

e5

Since every column of an all-vertex incidence matrix contains exactly two non-zero num-
bers, two ones, we can remove a row and still have enough information to define the graph. The
incidence matrixof a graph is obtained by removing a row from the all-vertex incidence matrix.
It is not unique because there aren possible rows to remove. The vertex corresponding to the
row removed is called thereference vertex.

Similarly, every column in the all-vertex incidence matrixof a digraph contains exactly two
non-zero numbers,+1 and−1. We can remove a row from the all-vertex incidence matrix and
obtain theincidence matrix. Notice that the rows of an all-vertex incidence matrix are linearly
dependent because the sum of rows is a zero vector.

Theorem 4.1. The determinant of an incidence matrix of a nontrivial tree is±1, regardless of
whether the tree is a directed graph or not.

Proof. We use induction onn, the number of vertices in the tree.
Induction Basis: n = 2 and it is obvious.
Induction Hypothesis: The theorem is true forn ≤ k. (k ≥ 2)
Induction Statement: The theorem is true forn = k + 1.
Induction Statement Proof: Let T be a tree which hask + 1 vertices and letA be an (arbi-

trary) incidence matrix ofT . T has at least two pendant vertices (Theorem 2.3). We choose a
pendant vertexvi which is not the reference vertex ofA and the edgeet which is incident onvi.
Then,

ait = (±)1 and aij = 0, whenj 6= t.

We expand the determinant of|A| by theith row:

|A| = (±)(−1)i+t|A′|,

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 36

whereA′ is the minor corresponding toait. We writeT ′ = T − vi which is also a tree (vi is a
pendant vertex). We use the induction hypothesis to get|A′| = ±1 becauseA′ is obviously an
incidence matrix ofT ′.

Corollary. If the digraphG has no loops, then the rank of its all-vertex incidence matrix is
ρ(G).

Proof. If we rearrange the rows or columns of the all-vertex incidence matrix, the rank of the
matrix will not change. Let us rearrange the vertices and arcs to group them by components.
Then, the all-vertex incidence matrix is a block diagonal matrix in which each block is an all-
vertex incidence matrix of a component.























1st compo-
nent

2nd compo-
nent

O

O
. . .

kth compo-
nent























We denoteni as the number of vertices in theith component. Every component has a spanning
tree whose incidence matrix has a nonzero determinant by Theorem 4.1, i.e. the matrix is not
singular. The all-vertex incidence matrix of theith component is obtained by adding columns
and one row to an incidence matrix of the corresponding spanning tree. The row added is
linearly dependent of other rows so that the rank of this matrix is the same as the rank of the
incidence matrix (= ni − 1). Notice that in the special case when a component is trivial, the
rank is zero= 1− 1. Therefore,

rank ofA = sum of the ranks of the components

= (n1 − 1) + · · ·+ (nk − 1)

= n1 + · · ·+ nk
︸ ︷︷ ︸

= n

−k = ρ(G).

Remark. From this proof, we can also get a basis for the row space and the column space of
the all-vertex incidence matrix. The columns corresponding to the branches of the spanning
forest ofG are a basis of the column space. We can get a basis of the row space by removing
one row out of each component block.

4.2 Cut Matrix

If all the cuts of a nontrivial and loopless graphG = (V,E) areI1, . . . , It, then thecut matrix
of G is at×m matrixQ = (qij), wherem is the number of edges inG and

qij =

{

1 if ej ∈ Ii (the cut is interpreted as an edge set)

0 otherwise.

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 37

Example. For the graph

v2

v3

e2 e3e4

e1
v1

the cuts areI1 = {e1, e4}, I2 = {e2, e3, e4} andI3 = {e1, e2, e3}. The cut matrix is

e1 e2 e3 e4

Q =





1 0 0 1
0 1 1 1
1 1 1 0





I1
I2
I3

Remark. If the graph hasn vertices, then it has1
2
(2n − 2) = 2n−1 − 1 cuts. Usually, there are

not this many distinct edge sets. For the cut matrix, we only take one cut corresponding to an
edge set so that there would not be repeated rows. Even so, there are usually too many rows.

If G is a nontrivial and loopless digraph, then we assign an arbitrary direction to every cut
〈V1, V2〉: theorientationof 〈V1, V2〉 is fromV1 to V2. In other words, we consideroriented cuts
and we pick only one direction from the two possibilities. Then, thecut matrixQ = (qij) is

qij =











1 if ej ∈ Ii and they are in the same direction

−1 if ej ∈ Ii and they are in opposite directions

0 otherwise.

Example. For the digraph

v1 v2

v4
v3

e3 e4

e1

e2

e5

the different cuts (interpreted as edge sets) areI1 = {e1, e2, e3, e4} (in the direction ofe1),
I2 = {e3, e4, e5} (in the direction ofe3), I3 = {e1, e2, e5} (in the direction ofe1) andI4 = ∅.
The cut matrix is

e1 e2 e3 e4 e5

Q =









1 −1 −1 −1 0
0 0 1 1 1
1 −1 0 0 1
0 0 0 0 0









I1
I2
I3
I4

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 38

Since〈{v}, V − {v}〉 is a cut for every vertexv, rows of the all-vertex incidence matrix are
rows ofQ. If we are dealing with directed graphs, then these rows may have to be multiplied
by−1.

Theorem 4.2.Every row of the cut matrix of a digraph can be expressed in twodifferent ways
as a linear combination of the rows of the all-vertex incidence matrix. The non-zero coefficients
are either all= +1 or all = −1.

Proof. Let Q be the cut matrix of a digraphG = (V,E) and letA be the all-vertex incidence
matrix. Let 〈V1, V2〉 (note that it is oriented) be the cut corresponding to theith row of Q.
Reindexing if needed, we can assume that

V1 = {v1, . . . , vr} and V2 = {vr+1, . . . , vn}.

We write
qi = ith row ofQ and at = tth row ofA.

We show that

qi =

r
∑

t=1

at = −
n

∑

t=r+1

at,

which proves the theorem. Let(vp, vq) = ek be thekth arc ofG. Then,

apk = kth element of the vectorap = 1,

aqk = kth element of the vectoraq = −1

and
ajk = 0 if j 6= p, q.

We get four cases:

• vp ∈ V1 andvq ∈ V2: Now p ≤ r andq ≥ r + 1 soqik = 1 and

qik =

r
∑

t=1

atk = −
n

∑

t=r+1

atk.

• vp ∈ V2 andvq ∈ V1: Now p ≥ r + 1 andq ≤ r soqik = −1 and

qik =

r
∑

t=1

atk = −
n

∑

t=r+1

atk.

• vp ∈ V1 andvq ∈ V1: Now p ≤ r andq ≤ r soqik = 0 and

qik =
r

∑

t=1

atk = − ar+1,k
︸ ︷︷ ︸

=0

− · · · − ank
︸︷︷︸

=0

.

• vp ∈ V2 andvq ∈ V2: Now p ≥ r + 1 andq ≥ r + 1 soqik = 0 and

qik = a1k
︸︷︷︸

=0

+ · · ·+ ark
︸︷︷︸

=0

= −
n

∑

t=r+1

atk.

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 39

The statements above are valid for everyk.

Example. (Continuing from the previous example) The corresponding row ofI1 is

(1,−1,−1,−1, 0) = (1,−1,−1,−1, 0) = −(−1, 1, 0, 0,−1)− (0, 0, 0, 0, 0)− (0, 0, 1, 1, 1).

Corollary. The rank of the cut matrix of a digraphG is ρ(G).

Proof. The all-vertex incidence matrixA of G is also a submatrix of the cut matrixQ of G.
Then, (by Corollary of Theorem 4.1)

rank(Q) ≥ rank(A) = ρ(G).

On the other hand, by Theorem 4.2, every row ofQ can be expressed as a linear combination
of the rows ofA. Therefore,

rank(Q) = rank(A) = ρ(G).

Another consequence is that the cut matrixQ can be expressed as

Q = A1A,

where the elements ofA1 are0 or±1. In addition, the matrixA1 can be constructed from the
process in the proof of Theorem 4.2.

If the graphG is connected, then it has a spanning treeT and an associated fundamental cut
set. The fundamental cut sets are also cuts (when cuts are interpreted as edge sets). Therefore,
the cut matrixQ of G has a submatrixQf that corresponds to these fundamental cut sets.
This matrix is called thefundamental cut set matrix. Similarly, the connected digraphG has
a fundamental cut set matrix: if we interpret a fundamental cut set as a set, then the direction
of the cut is chosen to be the same as the direction of the corresponding branch ofT . If we
rearrange the edges ofG so that we have the branches first and sort the fundamental cutsets in
the same order, then we get the fundamental cut set matrix in the form

Qf =
(

In−1 Qfc

)

,

whereIn−1 is the identity matrix withn− 1 rows. The rank ofQf is thusn− 1 = ρ(G).

Example. (Continuing from the previous example) We left out vertexv3 so we get a connected
digraph. We choose the spanning tree

v1 v2

v4

e3

e1

T:

The fundamental cut sets areI2 = {e3, e4, e5} (in the direction ofe3) andI3 = {e1, e2, e5} (in
the direction ofe1). Then,

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 40

e1 e3 e2 e4 e5

Qf =

(

1 0 −1 0 1
0 1 0 1 1

)

I3
I2

and

e1 e2 e3 e4 e5

Q =





1 −1 −1 −1 0
0 0 1 1 1
1 −1 0 0 1



←
←

4.3 Circuit Matrix

We consider a loopless graphG = (V,E) which contains circuits. We enumerate the circuits of
G: C1, . . . , Cℓ. Thecircuit matrixof G is anℓ×m matrixB = (bij) where

bij =

{

1 if the arcej is in the circuitCi

0 otherwise

(as usual,E = {e1, . . . , em}).
The circuits in the digraphG areoriented, i.e. every circuit is given an arbitrarydirection

for the sake of defining the circuit matrix. After choosing the orientations, the circuit matrix of
G isB = (bij) where

bij =











1 if the arcej is in the circuitCi and they in the same direction

−1 if the arcej is in the circuitCi and they are in the opposite direction

0 otherwise.

Example. For the directed graph

v1

e4

e1 v2

e2 e3

v3

the circuits are

v1

e4

e1 v2

e3

v3

C1

v1

e4

e1 v2

e2

v3

C2

v2

e2 e3

v3

C1

and the circuit matrix is

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 41

e1 e2 e3 e4

B =





1 0 −1 1
−1 1 0 −1
0 −1 1 0





C1

C2

C3

If the graphG is connected and contains at least one circuit, then it has a cospanning tree
T ∗ and the corresponding fundamental circuits. By choosing the corresponding rows of the
circuit matrixB, we get an(m− n+ 1)×m matrixBf , called thefundamental circuit matrix.
Similarly, a connected digraphG with at least one circuit has a fundamental circuit matrix: the
direction of a fundamental circuit is the same as the direction of the corresponding link inT ∗.

When we rearrange the edges ofG so that the links ofT ∗ come last and sort the fundamental
circuits in the same order, the fundamental circuit matrix takes the form

Bf =
(

Bft Im−n+1

)

,

whereIm−n+1 is the identity matrix withm−n+1 rows. The rank ofBf is thusm−n+1 = µ(G)
and the rank ofB is≥ m− n + 1.

Example. (Continuing from the previous example) We left out vertexv3 so we get a connected
digraph (see p.34) and we chose the spanning tree

v1 v2

v4

e3

e1

T:

The fundamental circuits are

v1 v2

e1

e2

C1

v1

v4

e3 e4 C2

v1 v2

v4

e3

e1

e5

C3

and

e1 e3 e2 e4 e5

Bf =





1 0 1 0 0
0 −1 0 1 0
−1 −1 0 0 1





C1

C2

C3

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 42

Theorem 4.3. An oriented cut and an oriented circuit of a digraph have an even number of
common arcs. Half of these arcs have the same direction in thecut and in the circuit, and the
remaining arcs have opposite directions in the cut and in thecircuit.

Proof. Compare to the proof of Theorem 2.6.

Theorem 4.4.For a digraph,BQT = O (zero matrix).

Proof. By the previous theorem, half of the nonzero numbers in the dot product corresponding
to each element ofBQT are+1. The remaining nonzero numbers are−1. Therefore, the dot
product is= 0.

Theorem 4.5. If the digraphG contains at least one circuit, then the rank of its circuit matrix
B is µ(G). Furthermore, ifG is connected, then the circuit matrixB can be expressed as
B = B2Bf , where the matrixB2 consists of0’s and±1’s, and the cut matrixQ can be expressed
asQ = Q1Qf , where the matrixQ1 consists of0’s and±1’s.

Proof. First we consider the case whenG is connected. We choose a spanning treeT of G and
rearrange them edges ofG so that the branches ofT come first and the links ofT ∗ come last.
We sort the fundamental cut sets in the same order as the branches and links. Then,

Qf =
(

In−1 Qfc

)

and Bf =
(

Bft Im−n+1

)

.

The blocks ofB can be constructed in a similar way:

B =
(

B1 B2

)

.

SinceQf is a submatrix ofQ andBf is a submatrix ofB, it follows from Theorem 4.4 that

O = BfQ
T
f =

(

Bft Im−n+1

) (

In−1 Qfc

)T
=

(

Bft Im−n+1

)

(

In−1

QT
fc

)

= BftIn−1 + Im−n+1Q
T
fc = Bft +QT

fc.

Hence
Bft = −Q

T
fc.

Furthermore, sinceQf is a submatrix ofQ, we can use the same theorem to get

O = BQT
f =

(

B1 B2

) (

In−1 Qfc

)T
=

(

B1 B2

)

(

In−1

QT
fc

)

= B1In−1 +B2Q
T
fc = B1 −B2Bft.

Hence
B =

(

B2Bft B2

)

= B2

(

Bft Im−n+1

)

= B2Bf ,

as claimed. In the same way,Q can be expressed asQ = Q1Qf , as claimed, which is clear
anyway since the rank ofQ is n− 1 and its elements are0’s and±1’s.

Every row ofB is a linear combination of the rows corresponding to the fundamental circuits
and the rank ofB is at most equal to the rank ofBf = m − n + 1. On the other hand, as we
pointed out earlier, the rank ofB is≥ m− n+ 1. Thus,rank(B) = m− n+ 1 (= µ(G)) for a
connected digraph.

In the case of a disconnected digraphG (which contains at least one circuit), it is divided into
components (k ≥ 2 components) and the circuit matrixB is divided into blocks corresponding
to the components (compare to the proof of the corollary of Theorem 4.1), in which case

rank(B) =

k
∑

i=1

(mi − ni + 1) = m− n+ k = µ(G).

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 43

Notice that the proof also gives the formula,Bft = −Q
T
fc, which connects the fundamental

cut matrix and the fundamental circuit matrix.

4.4 An Application: Stationary Linear Networks

A stationary linear networkis a directed graphG that satisfies the following conditions:

1. G is connected.

2. Every arc ofG belongs to some circuit and there are no loops inG.

3. Every arcej in G is associated with a numberij called thethrough-quantityor flow. If
there arem arcs inG, then we write

i =







i1
...
im







(through-vector).

4. Every vertexvi in G is associated with a numberpi called thepotential. Furthermore, the
across-quantityor potential differenceof the arcej = (vi1 , vi2) is

uj = pi2 − pi1.

If there aren vertices andm arcs inG, then we write

p =







p1
...
pn






and u =







u1
...
um







(potential vectorandacross-vector). (Potentials are rarely needed.)

5. Every arcej is one of the following:

(a) a component1, for which there is an associated numberrj. rj is constant (6= 0)
(stationarity) and the following equation links the quantities:

uj = ijrj (linearity).

(b) a through-source, for which the through-quantityij is fixed.

(c) anacross-source, for which the across-quantityuj is fixed.

6. (Kirchhoff ’s Through-Quantity Law) The sum of the through-quantities of an oriented cut
of G is zero when the cut is interpreted as an edge set and the sign of a through-quantity
is changed if the directions of a cut and an arc are different.

7. (Kirchhoff ’s Across-Quantity Law) The sum of the across-quantities of an oriented circuit
of G is zero when the sign of an across-quantity is changed if the directions of a circuit
and an arc are different.

1Not to be confused with a component of a graph!

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 44

Example. A typical stationary linear network is an electrical circuit with linear resistors, con-
stant current sources and constant voltage sources. The components are resistors andrj are the
resistances. Equation 5.(a) is Ohm’s Law.

We take a spanning treeT of a stationary linear networkG, its fundamental cut matrixQf

and its fundamental circuit matrixBf . Let us rearrange the arcs in these matrices and vectorsi
andu like we did before. That is, the branches ofT will come first followed by the links ofT ∗.
Kirchhoff’s Laws can then be written as

Qi = 0 and Bu = 0.

On the other hand, the rows of the fundamental cut matrixQf span all the rows ofQ, and
similarly rows of the fundamental circuit matrixBf span the rows ofB. Then, Kirchhoff’s
Laws can also be written as

Qf i = 0n−1 and Bfu = 0m−n+1.

Let us form the diagonal matricesK = ⌈k1, . . . , km⌋ andL = ⌈ℓ1, . . . , ℓm⌋, where

kj =











−rj if ej is a component

1 if ej is a through-source

0 if ej is an across-source

and ℓj =











1 if ej is a component

0 if ej is a through-source

1 if ej is an across-source,

and them-vectors = (s1, . . . , sm)
T, where

sj =











0 if ej is a component

ij if ej is a through-source

uj if ej is an across-source.

Then, all the information can be expressed as a system of linear equations




K L
Qf O(n−1)×m

O(m−n+1)×m Bf





(

i
u

)

=





s
0n−1

0m−n+1



 ,

known as thefundamental equations. The through and across quantities can be solved (ideally)
if rj and the sources are given.

Remark. The same procedure can be applied to form state (differential) equations fordynamic
networks, which have nonstationary components.

The matrix of this system of linear equations does not have tobe nonsingular and the system
does not even have to have a unique solution at all. For example, in the matrix above, we can
easily see that it is singular if some circuit only consists of across-sources or if some cut only
consists of through-sources. As a matter of fact, this is theonly case when the through and
across quantities are not defined uniquely if the constantsrj are real numbers with the same
sign (and often otherwise too).

We choose a specific spanning treeT to explore these concepts more carefully:

Lemma. If no cut ofG consists of only through-sources and no circuit ofG consists of only
across-sources, thenG has a spanning treeT such that every across-source is a branch ofT
and every through-source is a link ofT ∗.

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 45

Proof. If G satisfies the hypothesis, then we first choose a digraphM which has every vertex
and across-source (arc) ofG. There are no circuits in this digraph. Then we add components to
M one by one and try to come up with a spanning tree. If this failsat some point, thenG has a
cut with only through-sources, which is impossible.

Now let us assume that no cut ofG consists of only through-sources and no circuit ofG
consists of only across-sources. We use the spanning treeT mentioned in the lemma. We
rearrange the arcs ofG so that (as before) the branches ofT come first. Within these branches,
the across-sources come first followed by components. Similarly, the links are rearranged so
that the components come first and the through-sources come last.

The system of2m equations can then be written as
























O O O O I O O O
O −R1 O O O I O O
O O −R2 O O O I O
O O O I O O O O
I O Q11 Q12 O O O O
O I Q21 Q22 O O O O
O O O O B11 B12 I O
O O O O B21 B22 O I

















































i1
i2
i3
i4
u1

u2

u3

u4

























=

























s1
0
0
s2
0
0
0
0

























← across-sources (in branches)
← components (in branches)
← components (in links)
← through-sources (in links)
← fundamental cut sets (across-sources)
← fundamental cut sets (components)
← fundamental circuits (components)
← fundamental circuits (through-sources)

where theI’s are identity matrices of the right dimensions, theO’s are zero matrices of the right
dimensions and the0’s are zero vectors of the right dimensions.

Remark. Here we assume thatG has all these four types of arcs (across-source branch, com-
ponent branch, through-source link and component link). Inother cases (for example, when
there are no through-sources), we leave the corresponding rows, columns and elements out of
the system of equations. Other cases are treated in a similarway.

Solving the equations, we get

u1 = s1 , u2 = R1i2 , u3 = R2i3 , i4 = s2

which leaves this system of equations:








I O Q11 O
O I Q21 O
O B12R1 R2 O
O B22R1 O I

















i1
i2
i3
u4









= −









Q12s2
Q22s2
B11s1
B21s1









.

Thus,

i1 = −Q11i3 −Q12s2 , i2 = −Q21i3 −Q22s2 , u4 = −B22R1i2 −B21s1.

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 46

From the results in the previous section, we get

Bft =

(

B11 B12

B21 B22

)

= −QT
fc = −

(

Q11 Q12

Q21 Q22

)T

=

(

−QT
11 −Q

T
21

−QT
12 −Q

T
22

)

.

Therefore,B11 = −Q
T
11 andB12 = −Q

T
21. Finally, there is only one set of equations fori3:

(QT
21R1Q21 +R2)i3 = QT

11s1 −QT
21R1Q22s2.

The matrix2 of this system of equations can written as

QT
21R1Q21 +R2 =

(

QT
21 I

)

(

R1 O
O R2

)(

Q21

I

)

.

We can see that it is not singular if the diagonal elements ofR1 andR2 are all positive or all
negative.

Therefore, we get

Theorem 4.6. If the constantsrj are real numbers with the same sign, then the fundamental
equations of the stationary linear network have a unique solution exactly when no cut of the
network consists of only through-sources and no circuit of the network consists of only across-
sources.

From the theorem above, we notice that the number of equations we have to solve (numerically)
is considerably fewer than2m.

Example. A mono-frequency AC circuit with passive elements (resistors, capacitors and induc-
tors) can also be modelled as a stationary linear network (Theorem 4.6 does not apply). In the
circuit below, the component values areR = 10 Ω, C = 100 µF, L = 10 mH and the current
source is

I = 10 cos(1000t) A.

I R

R

L

C

The complex current of the source is10ej1000t, wherej is the imaginary unit. The (angular)
frequency isω = 1000 rad/s. There are no voltage sources. The corresponding digraph is

2This matrix is called theimpedance matrix. Similarly, theadmittance matrixcan be constructed from the
blocks of the fundamental circuit matrix

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 47

v3
e5

v1

e3

v2

e2

e4

e1

The voltages and currents written as complex exponentials are ik = Ike
j1000t anduk = Uke

j1000t.
In particular, the current source isi5 = s5 = 10ej1000t. We getrk from the familiar formulae
from electrical circuit analysis:

r1 = r4 = R = 10 , r3 =
1

jωC
= −10j , r2 = jωL = 10j.

We choose the arcse1 ande2 as the branches of the spanning treeT . Because of the linearity
of the system of equations, the exponential factorsej1000t cancel out and we get

































−10 0 0 0 0 1 0 0 0 0
0 −10j 0 0 0 0 1 0 0 0
0 0 10j 0 0 0 0 1 0 0
0 0 0 −10 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 1 0 1 0
0 0 0 0 0 −1 0 0 0 1

































































I1
I2
I3
I4
I5
U1

U2

U3

U4

U5

































=

































0
0
0
0
10
0
0
0
0
0

































.

Notice that we have left out the across-sources because there are none. This system is easily
solved using computer programs, e.g. MATLAB:

»H=[-10 0 0 0 0 1 0 0 0 0 ;
0 -10*j 0 0 0 0 1 0 0 0 ;
0 0 10*j 0 0 0 0 1 0 0 ;
0 0 0 -10 0 0 0 0 1 0 ;
0 0 0 0 1 0 0 0 0 0 ;
1 0 1 1 1 0 0 0 0 0 ;
0 1 0 -1 0 0 0 0 0 0 ;
0 0 0 0 0 -1 0 1 0 0 ;
0 0 0 0 0 -1 1 0 1 0 ;
0 0 0 0 0 -1 0 0 0 1];

»s=[0 0 0 0 10 0 0 0 0 0]’;
»UV=inv(H)*s;
»[UV angle(UV) abs(UV)]

ans =

-6.0000 + 2.0000i 2.8198 6.3246
-2.0000 + 4.0000i 2.0344 4.4721
-2.0000 - 6.0000i -1.8925 6.3246
-2.0000 + 4.0000i 2.0344 4.4721
10.0000 0 10.0000

-60.0000 +20.0000i 2.8198 63.2456

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 48

-40.0000 -20.0000i -2.6779 44.7214
-60.0000 +20.0000i 2.8198 63.2456
-20.0000 +40.0000i 2.0344 44.7214
-60.0000 +20.0000i 2.8198 63.2456

Thus, for example, the complex voltage across the current source is

u5 = U5e
j1000t = 63.25ej(1000t+2.82)

and the real voltage is63.25 cos(1000t+ 2.82) V.

Kirchhoff’s Through-Quantity Law can also be written in theform

Ai = 0n,

whereA is the all-vertex incidence matrix ofG. Furthermore,

ATp = −u.

Hence
u • i = uTi = −pTAi = 0.

This result only depends on the structure of the digraphG (through the all-vertex incidence
matrix). Now we get the famous theorem:

Theorem 4.7. (Tellegen)If two stationary linear networks have the same digraph withcorre-
sponding through-vectorsi1 andi2 as well as corresponding across-vectorsu1 andu2, then

u1 • i2 = 0 and u2 • i1 = 0.

If we apply this to the case when the two networks are exactly the same (= G), then we get

u • i = 0,

known as theLaw of Conservation of Energy.

Remark. More details on this subject can be found e.g. inSWAMY & T HULASIRAMAN or
VÁGÓ, as well asDOLAN & A LDOUS.

4.5 Matrices overGF(2) and Vector Spaces of Graphs

The set{0, 1} is called afield (i.e. it follows the same arithmetic rules as real numbers) if
addition and multiplication are defined as follows:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

In this case−1 = 1 and1−1 = 1. This is the fieldGF(2).
If we think of the elements0 and1 of the all-vertex incidence, cut, fundamental cut, circuit

and fundamental circuit matrices of a (”undirected”) graphas elements of the fieldGF(2), then
Theorems 4.1, 4.2, 4.4, 4.5 and their corollaries also applyto ”undirected graphs”. (Keep in
mind that−1 = 1 in the fieldGF(2).) The proofs are the same.

CHAPTER 4. MATRICES AND VECTOR SPACES OF GRAPHS 49

For ”undirected” graphs, the vector spaces are over the fieldGF(2). For directed graphs, the
vector spaces are real (i.e. over the fieldR). The row space of the cut matrix of a (di)graph is
thecut space. Similarly, the row space of the circuit matrix is thecircuit space. The dimension
of the cut space is the rank of the (di)graph and the dimensionof the circuit space is the nullity
of the (di)graph. Furthermore, the cut space and the circuitspace are orthogonal complements.
(All of these statements follow directly from the results above.)

Often, we deal with the above mentioned spaces through subgraphs, i.e. we identify a vector
with the subgraph generated by the corresponding arcs. In the case of ”undirected” graphs, the
addition ofGF(2) vectors corresponds to the ring sum operation.

Chapter 5

Graph Algorithms

5.1 Computational Complexity of Algorithms

The complexityof a problem is related to the resources required to compute asolution as a
function of the size of the problem. The size of a problem is measured by the size of the inputN ,
and the resources required are usually measured by time (number of steps) and space (maximum
amount of memory measured appropriately).Decision problemsor yes-or-no questionsare very
common. Read HOPCROFT& U LLMAN for classical complexity theory.

To make computational complexities comparable, we need to agree on some specific math-
ematical models for algorithms. For example, consider computing with Turing Machines and
refer to courses in Theoretical Computer Science and Mathematical Logic. We havedetermin-
istic andnondeterministicversion of algorithm models. In the deterministic version,there are
no choices to be made. In the nondeterministic version, there is a choice to be made somewhere
on the way. For a nondeterministic algorithm, we have to makethe following assumptions so
that we can actually solve problems:

1. The algorithm terminates at some point no matter how we choose the steps.

2. The algorithm can terminate without yielding a solution.

3. When the algorithm terminates and yields a solution, the solution is correct (it is possible
to have more than one solution).

4. For decision problems, if the algorithm fails to give a positive answer (yes), then the
answer is interpreted to be negative (no).

5. If the problem is to compute a value, then the nondeterministic algorithm has to give a
solution for every input (value of the function).

Nondeterministic algorithms are best treated asverification proceduresfor problems rather than
procedures for producing answers.

Computational complexity is consideredasymptotically, that is for large problems, time
or space complexities that differ by constant coefficients are not distinguished because linear
acceleration and compression of space are easy to perform inany kind of algorithm model.
Although the choice of an algorithm model has a clear impact on the complexity, it is not an
essential characteristic, i.e. it does not change the complexity class. Often, we use thebig-O
notationfor complexities.O(f(N)) refers to the class of functionsg(N) such that ifN ≥ N0

holds, then|g(N)| ≤ Cf(N) holds, whereC is a constant.

50

CHAPTER 5. GRAPH ALGORITHMS 51

Without exploring algorithm models any further, we define a couple of important complex-
ity classes. The time complexity classP (deterministic polynomial time problems) consists of
problems of (input) sizeN where it takes at mostp(N) steps to solve the problem using deter-
ministic algorithms.p(N) is some problem dependent polynomial ofN . The time complexity
classNP (nondeterministic polynomial time problems) consists of problems of sizeN where it
takes at mostp(N) steps to solve the problem using nondeterministic algorithms. Once again,
p(N) is some problem dependent polynomial ofN .

Time complexity classco−NP (complements of nondeterministic polynomial time prob-
lems) consists of decision problemswhose complements are inNP. (The complementof a
problem is obtained by swapping the positive and the negative answer.)

Obviously,P ⊆ NP and (for decision problems)P ⊆ co−NP. Whether or not the inclu-
sion is proper is an open problem, actually quite a famous problem. It is widely believed that
both of the inclusions are proper. It is not known if the following holds for decision problems:

NP = co−NP or P = NP ∩ co−NP

Most researchers believe that they do not hold.
The space complexity classPSPACE (deterministic polynomial space problems) consists

of problems of (input) sizeN where it takes at mostp(N) memory units to solve the prob-
lem using deterministic algorithms.p(N) is some problem dependent polynomial ofN . The
space complexity classNPSPACE (nondeterministic polynomial space problems) consists of
problems of sizeN where it takes at mostp(N) memory units to solve the problem using non-
deterministic algorithms. Once again,p(N) is some problem dependent polynomial ofN . It is
known that

NP ⊆ PSPACE = NPSPACE ,

but it is not known whether the inclusion is proper or not.
An algorithm may include some ideally generated random numbers. The algorithm is then

calledprobabilisticor stochastic. The corresponding polynomial time complexity class isBPP
(random polynomial time problemsor bounded-error probabilistic polynomial time problems).
Some stochastic algorithms may fail occasionally, that is,they produce no results and terminate
prematurely. These algorithms are calledLas Vegas algorithms. Some stochastic algorithms
may also produce wrong answers (ideally with a small probability). These kind of algorithms
are calledMonte Carlo algorithms. Some stochastic algorithms seldom yield exact solutions.
Nevertheless, they give accurate approximate solutions with high probability. These kind of
algorithms are calledapproximation algorithms.

The task of an algorithm may be to convert a problem to another. This is known asreduction.
If problemA can be reduced to another problemB by using a (deterministic) polynomial time
algorithm, then we can get a polynomial time algorithm for problemA from a polynomial time
algorithm forB. A problem isNP-hard if every problem inNP can be reduced to it by a
polynomial time algorithm.NP-hard problems areNP-completeif they are actually inNP.
NP-complete problems are the ”worst kind”. If any problem inNP could be shown to be
deterministic polynomial time, then every problem inNP would be inP andP = NP. Over
one thousandNP-complete problems are known currently.

The old division of problems intotractable and intractable means thatP problems are
tractable and others are not. Because we believe thatP 6= NP in general,NP-complete
problems are intractable. In the following, graph algorithms are either inP or they are ap-
proximations of some more demanding problems. The size of aninput can be for example the
number of nonzero elements in an incidence matrix, the number of verticesn or the number of
edgesm or some combination ofn andm.

CHAPTER 5. GRAPH ALGORITHMS 52

5.2 Reachability: Warshall’s Algorithm

We only deal with directed graphs in this section. The results also hold for ”undirected” graphs
if we interpret an edge as a pair of arcs in opposite directions.

Problem. We are given an adjacency matrix of the digraphG = (V,E). We are to construct
thereachability matrixR = (rij) ofG, where

rij =

{

1 if G has a directedvi–vj path

0 otherwise.

(Note thatV = {v1, . . . , vn}.) In particular, we should note that ifrii = 1, thenvi is in a
directed circuit.

Warshall’s Algorithmconstructs a series ofn× n matricesE1, . . . ,En where

1. elements ofEi are either zero or one.

2. Ei ≤ Ei+1 (i = 0, . . . , n− 1) (comparison is done element by element).

3. E0 is obtained from the adjacency matrixD by replacing the positive elements with ones.

4. En = R.

The algorithm is presented as a pseudocode:

procedure Warshall
begin

E := E0

for i := 1 to n do
for j := 1 to n do

if (E)ji = 1 then for k := 1 to n do
(E)jk := max((E)jk, (E)ik)

fi
od

od
end

In this case, the maximizing operation is sometimes called theBoolean sum:

max 0 1
0 0 1
1 1 1

Let us show that Warshall’s Algorithm gives us the desired results. LetEi denote the value
of E afteri steps.

Statement. (i) If there is a directed path fromvs to vt such that apart fromvs andvt, the path
only includes vertices in the set{v1, . . . , vi}, then(Ei)st = 1.

(ii) If vertexvs belongs to a directed circuit whose other vertices are in theset{v1, . . . , vi},
then(Ei)ss = 1.

CHAPTER 5. GRAPH ALGORITHMS 53

Proof. We will use induction oni.
Induction Basis: i = 1. (E1)st = 1 if (E0)st = 1, or (E0)s1 = 1 and(E0)1t = 1. We have

one of the following cases:

s t: vs vt vs v1

vt

s = t: vs vs v1

Induction Hypothesis: The statement is true fori < ℓ. (ℓ ≥ 2)
Induction Statement: The statement is true fori = ℓ.
Induction Statement Proof: Let us handle both statements together. The proof for (ii) is

given in square brackets. We have two cases:

• vℓ belongs to the directed path [resp. directed circuit] butℓ 6= s, t [resp.ℓ 6= s]. Then, we
use the Induction Hypothesis:

(Eℓ−1)sℓ = 1 and (Eℓ−1)ℓt = 1 [resp. (Eℓ−1)sℓ = 1 and (Eℓ−1)ℓs = 1],

so(Eℓ)st = 1 [resp.(Eℓ)ss = 1].

• vℓ is eithervs or vt [resp.vℓ is vs] or it does not belong to the directed path [resp. directed
circuit] at all. Then, by the Induction Hypothesis

(Eℓ−1)st = 1 [resp. (Eℓ−1)ss = 1],

so(Eℓ)st = 1 [resp.(Eℓ)ss = 1].

In Warshall’s Algorithm, the maximizing operation is performed at mostn3 times.

5.3 Depth-First and Breadth-First Searches

Problem. We have to traverse through a (di)graph to find some kind of vertices or edges.

We assume that the (di)graph is connected and loopless. For disconnected graphs, we have to
go through the components separately. We ignore loops if the(di)graph has any.

Depth-First Search, DFS,has many uses. The procedure is a bit different for undirected
graphs and directed graphs. Therefore they will be treated separately.

Undirected Graphs

We choose a starting vertexr (root) to start the search. Then, we traverse an edgee = (r, v)
to go to the vertexv. At the same time, wedirect e from r to v. Now, we say that the edgee
is examinedand we call it atree edge. The vertexr is called thefather of v and we denote it
r = FATHER(v).

We continue the search. At a vertexx, there are two cases:

CHAPTER 5. GRAPH ALGORITHMS 54

(1) If every edge incident tox has been examined, return to the father ofx and continue the
process fromFATHER(x). The vertexx is said to becompletely scanned.

(2) If there exist some unexamined edges incident tox, then we choose one such edgee =
(x, y) and direct it fromx to y. This edge is now said to beexamined. We have two
subcases now:

(2.1) If y has not been visited before, then we traverse the edge(x, y), visit y and continue
the search fromy. In this case,e is a tree edgeandFATHER(y) = x.

(2.2) If y has been visited before, then we select some other unexamined edge incident to
x. In this case, the edgee is called aback edge.

Every time we come to a new vertex which has never been visitedbefore, we give it a distinct
number. The number of the root is1. We write

DFN(x) = running number of vertexx.

A complete DFS ends when we traverse back to the root and we have visited every vertex or
when we have found the desired edge/vertex.

DFS divides the edges ofG into tree edges and back edges. Obviously, the tree edges form
a spanning tree ofG, also known as aDFS tree. If we include the directions of the tree edges,
we get adirected DFS tree. DFS gives a direction to every edge inG. When we use these
directions, we get a digraph whose underlying subgraph isG. It has the DFS tree as a directed
spanning tree.

Example. For the graph

we start the DFS from a root in the upper left corner. The back edges are marked with two lines.

CHAPTER 5. GRAPH ALGORITHMS 55

1

5

4

6

3

2

11

9

10

8

7
=

=

=
=

=

=

=

The corresponding DFS tree is

1

5

4

6

3

2

11

9

10

8

7

In the following, we denote,

K(x) =

{

0 if vertexx has not been visited

1 if vertexx has been visited

andTREE andBACK are set variables containing the directed tree edges and back edges.

Depth-First Search for Graphs:

1. SetTREE← ∅, BACK ← ∅ andi← 1. For every vertexx of G, setFATHER(x)← 0
andK(x)← 0.

2. Choose a vertexr for which K(r) = 0 (this condition is needed only for disconnected
graphs, see step #6). SetDFN(r)← i, K(r)← 1 andu← r.

3. If every edge incident tou has been examined, go to step #5. Otherwise, choose an edge
e = (u, v) that has not been examined.

CHAPTER 5. GRAPH ALGORITHMS 56

4. We direct edgee from u to v and label it examined.

4.1 If K(v) = 0, then seti← i+1, DFN(v)← i, TREE← TREE∪ {e}, K(v)← 1,
FATHER(v)← u andu← v. Go back to step #3.

4.2 If K(v) = 1, then setBACK← BACK ∪ {e} and go back to step #3.

5. If FATHER(u) 6= 0, then setu← FATHER(u) and go back to step #3.

6. (Only for disconnected graphs so that we can jump from one component to another.) If
there is a vertexr such thatK(r) = 0, then seti← i+ 1 and go back to step #2.

7. Stop.

We denoteT as the DFS tree and~G as the directed graph obtained from the algorithm.T
is a directed spanning tree of~G. If there is a directed path fromu to v in T , then we callu an
ancestorof v andv adescendentof u. Verticesu andv arerelatedif one of them is an ancestor
of the other. In particular, if(u, v) is an edge ofT , thenu is the father ofv andv is asonof u.
An edge(u, v) of G, whereu andv are unrelated, is called across edge. However,

Statement. Cross edges do not exist.

Proof. Let u andv be two distinct vertices which are unrelated. Then, (by quasi-strong connec-
tivity) there are two verticesu′ andv′ such that

• FATHER(u′) = FATHER(v′),

• u′ = u or u′ is an ancestor ofu and

• v′ = v or v′ is an ancestor ofv.

We examine the case whereDFN(u′) < DFN(v′) (the other case is obviously symmetrical).
We labelT1 as the directed subtree ofT whose root isu′ andT2 as the directed subtree ofT
whose root isv′. Obviously, DFS goes through the vertices ofT2 only afteru′ is completely
scanned. Furthermore,u′ is completely scanned only after all the vertices ofT1 are completely
scanned. Hence, it is impossible to have an edge(u, v).

Directed Graphs

Depth-first search in a (connected and loopless) digraphG is similar to the case for undi-
rected graphs. The algorithm divides the arcs inG into four different classes. If the search
proceeds to an unexamined arce = (x, y), then the four possible classes are:

(1) If y has not been visited, thene is atree edge.

(2) If y has been visited, then there are three cases:

(2.1) y is a descendent ofx in the subgraph induced by existing tree edges. Then,e is a
forward edgeandDFN(y) > DFN(x).

(2.2) x is a descendent ofy in the subgraph induced by the existing tree edges. Then,e is
a back edgeandDFN(y) < DFN(x).

(2.3) x andy are not related by any of the existing tree edges. Then,e is a cross edge
andDFN(y) < DFN(x). (Note! It is impossible thatDFN(y) > DFN(x). This is
proven in the same way as we did previously.)

CHAPTER 5. GRAPH ALGORITHMS 57

The directed subgraph ofG induced by tree edges is called theDFS forest(directed forest).
If DFN(y) > DFN(x) holds for the arc(x, y), then(x, y) is a tree edge or a forward edge.

During the search, it is easy to distinguish the two because(x, y) is a tree edge ify has not been
visited and it is a forward edge otherwise. IfDFN(y) < DFN(x), then(x, y) is a back edge or
a cross edge. During the search, it is easy to distinguish thetwo because(x, y) is a cross edge
if y is completely scanned and it is a back edge otherwise.

In the following,K, FATHER, TREE andBACK are defined as previously. We also have
two new variablesFORWARD andCROSS (their meanings are obvious) and

L(x) =

{

1 if x is completely scanned

0 otherwise.

Depth-First Search for Digraphs:

1. SetTREE ← ∅, FORWARD ← ∅, BACK ← ∅, CROSS ← ∅ andi ← 1. For every
vertexx in G, setFATHER(x)← 0, K(x)← 0 andL(x)← 0.

2. Choose a vertexr such thatK(r) = 0 and setDFN(r)← i, K(r)← 1 andu← r.

3. If every arc coming out ofu has already been examined, then setL(u) ← 1 and go to
step #5. Otherwise, choose an unexamined arce = (u, v).

4. Label the arce examined.

4.1 If K(v) = 0, then seti← i+1, DFN(v)← i, TREE← TREE∪ {e}, K(v)← 1,
FATHER(v)← u andu← v. Go to step #3.

4.2 If K(v) = 1 andDFN(v) > DFN(u), then setFORWARD← FORWARD ∪ {e}
and go to step #3.

4.3 If K(v) = 1 andDFN(v) < DFN(u) andL(v) = 0, then setBACK ← BACK ∪
{e} and go to step #3.

4.4 If K(v) = 1 andDFN(v) < DFN(u) andL(v) = 1, then setCROSS← CROSS∪
{e} and go to step #3.

5. If FATHER(u) 6= 0, then setu← FATHER(u) and to go step #3.

6. If there is a vertexr such thatK(r) = 0, then seti← i+ 1 and go to step #2.

7. Stop.

Example. DFS in the following digraph starts from a root in the upper left corner and proceeds
like this (back edges are marked with one line, cross edges are marked with two lines and
forward edges are marked with three lines):

CHAPTER 5. GRAPH ALGORITHMS 58

1

2

3
4

5

6

7

8

9

1011 12

13

––

–––
–––

–––

–––

––

––

––

––

– –

The corresponding DFS forest is

1

2

3
4

5

6

7

8

9

1011 12

13

CHAPTER 5. GRAPH ALGORITHMS 59

Theorem 5.1.If a depth-first search in a quasi-strongly connected digraph starts from one of its
roots, then the DFS forest is a directed tree. In particular,the DFS forest of a strongly connected
digraph is a directed tree no matter where the search starts from.

Proof. Let us prove by contradiction and consider the counter hypothesis: The DFS forestT
resulted from a DFS in a quasi-strongly connected digraphG that began from rootr is not a
directed tree.

SinceT is a directed forest, the componentT1 of T which has the rootr does not contain
some vertexv of G. On the other hand, there is a directed path fromr to v. We choose the last
vertexu on this path which is inT1 and the arce = (u, w). Since the vertexw is not inT1,
the edgee is not a tree edge, a back edge nor a forward edge. Then, it mustbe a cross edge.
Because the search began atr, the vertexw has to be inT1 (

√

).
Strongly connected digraphs are also quasi-strongly connected and any vertex can be chosen

as a root.

Breadth-first search, BFS, is related to DFS. Let us consider a connected graphG.

Breadth-First Search for Graphs:

1. In the beginning, no vertex is labeled. Seti← 0.

2. Choose a (unlabeled) starting vertexr (root) and label it withi.

3. Search the setJ of vertices that are not labeled and are adjacent to some vertex labeled
with i.

4. If J 6= ∅, then seti← i+ 1. Label the vertices inJ with i and go to step #3.

5. (Only for disconnected graphs so we can jump from one component to another.) If a
vertex is unlabeled, then seti← 0 and go to step #2.

6. Stop.

BFS also produces a spanning tree, called theBFS tree, when we take the edges

(vertex labeled withi, unlabeled vertex)

while formingJ . One suchtree edgeexists for each vertex inJ . We obtain thedirected BFS tree
by orienting the edges away from the labeled vertex to the unlabeled vertex. BFS as presented
above does not however orient every edge in the graph. Obviously, the label of a vertex is the
length of the shortest path from the root to it, in other words, thedistancefrom the root.

Example. BFS in the graph we had in the previous example starts at a rootin the upper left
corner and proceeds as follows. (Tree edges are marked with two cross lines.)

CHAPTER 5. GRAPH ALGORITHMS 60

=

=

=
=

=

=
==

=

=

The corresponding BFS tree is

We obtain the directed BFS tree by orienting the branches away from the root.

BFS in a digraphG is very similar to what we just did.

Breadth-First Search for Digraphs:

1. In the beginning, no vertex is labeled. Seti← 0.

2. Choose an unlabeled starting vertexr (root) and label it withi.

3. Search the setJ of terminal vertices of arcs whose initial vertices have been labeled with
i but whose terminal vertices have not been labeled.

4. If J 6= ∅, then seti← i+ 1. Label the vertices inJ with i and go to step #3.

5. If not all vertices have been labeled, then seti← 0 and go to step #2.

6. Stop.

CHAPTER 5. GRAPH ALGORITHMS 61

BFS in a digraph produces a BFS forest (directed forest) whenwe take the examined arcs

(vertices labeled withi, unlabeled vertices)

while formingJ . One suchtree edgeexists for each vertex inJ .

Remark. In addition, BFS can be modified to sort the arcs like DFS.

5.4 The Lightest Path: Dijkstra’s Algorithm

Problem. The edges of a (di)graph are given non-negative weights. Theweight of a path is
the sum of the weights of the path traversed. We are to find the lightest (directed) path in the
(di)graph from vertexu to vertexv (6= u) if the path exists (sometimes also called the shortest
path). We should state if such path does not exist.

Obviously, we can assume that we do not have any loops or parallel edges. Otherwise, we
simply remove the loops and choose the edge with the lowest weight out of the parallel edges.
From now on, we only consider directed graphs. Undirected graphs can be treated in the same
way by replacing an edge with two arcs in opposite directionswith the same weight.

We denoteα(r, s) as the weight of the arc(r, s). Dijkstra’s Algorithmmarks the vertices as
permanentor temporaryvertices. The label of a vertexr is denotedβ(r) and we define

γ(r) =

{

1 if the label is permanent

0 if the label is temporary.

A permanent labelβ(r) expresses the weight of the lightest directedu–r path. A temporary
labelβ(r) gives an upper limit to this weight (can be∞). Furthermore, we denote:

π(r) =

{

the predecessor of vertexr on the lightest directedu–r path if such a path exists

0 otherwise,

so we can construct the directed path with the lowest weight.

Dijkstra’s Algorithm:

1. Setβ(u) ← 0 andγ(u) ← 1. For all other verticesr, setβ(r) ← ∞ andγ(r) ← 0. For
all verticesr, we setπ(r)← 0. Furthermore, setw ← u.

2. For every arc(w, r), whereγ(r) = 0 andβ(r) > β(w) + α(w, r), set

β(r)← β(w) + α(w, r) and π(r)← w.

3. Find a vertexr∗ for whichγ(r∗) = 0, β(r∗) <∞ and

β(r∗) = min
γ(r)=0

{β(r)}.

Set
γ(r∗)← 1 and w ← r∗.

If there is no such vertexr∗, a directedu–v path does not exist and we stop.

CHAPTER 5. GRAPH ALGORITHMS 62

4. If w 6= v, then go to step #2.

5. Stop.

We see that the algorithm is correct as follows. We denote (for every step):

V1 = {permanently labeled vertices}

V2 = {temporarily labeled vertices}.

(〈V1, V2〉 is a cut with the completely scanned vertices on one side and other vertices on the
other side.)

Statement. The labelβ(r) of the vertexr in V1 is the weight of the lightest directedu–r path
andπ(r) is the predecessor ofr on such a path.

Proof. After step #2, the temporary label ofr is always the weight of a directedu–r path with
the lowest weight whose vertices are inV1 except forr (=∞ if there is no such path), andπ(r)
is a predecessor ofr on this path (or= 0). This is because (two cases):

• Before step #2,β(r) = ∞. The only ”new” vertex inV1 is noww so every possible
directedu–r path has to visitw. If there is no such path, then the case is obvious (β(r)
stays at∞ andπ(r) stays at zero). Let us assume that we have the (lightest) directed
u–r path that contains only vertices ofV1 andr as well. In particular,w is included. The
subpath fromu to w has of course the lowest weight. We consider the vertexs (∈ V1)
which is the predecessor ofr on the directedu–r path. Ifs = w, then the case is clear. If
s 6= w, thens has been aw before, in which caseβ(r) can not be=∞ (step #2) (

√

).

• Before step #2,β(r) < ∞. Then,β(r) is the weight of the lightest directedu–r path
whose vertices are inV1 − {w} except forr. The only ”new” vertex inV1 is w so every
possible lighter directedu–r path has to visitw. If there is no such path, then the case
is obvious (β(r) andπ(r) remain unchanged). Let us assume that we have a (lighter)
directedu–r path that contains only vertices ofV1 and r as well. In particular,w is
included. The subpath fromu to w has of course the lowest weight. We consider the
vertexs (∈ V1) which is the predecessor ofr on the directedu–r path. If s = w, then
the case is clear. Ifs 6= w, thens is in V1 − {w}. Sinces has been aw before, there is
a lightest directedu–s path that does not containw (otherwise, we should have chosen
r∗ in step #3 to be some predecessor ofs on the directedu–w–s path). Then, we get a
directedu–r path with a lower weight that containsr and only vertices inV1−{w} (

√

).

The permanent label is the weight we seek because of the minimization in step #3 andπ(r)
gives a predecessor ofr as we claimed.

At the end of the algorithm, vertexv gets a permanent label or the process stops at step #3
(which means a directedu–v path does not exist). The directed path with the lowest weight can
be obtained by starting from the vertexv and finding the predecessors by using the labelπ.

If we replace step #4 by

4.’ Go to step #2.

and continue the process until it stops at step #3, we get

β(w) =











0 if w = u

the weight of the lightest directedu–w path if there is one

∞ otherwise

CHAPTER 5. GRAPH ALGORITHMS 63

and

π(w) =

{

the predecessor ofw on the lightest directedu–w path if there is one andw 6= u

0 otherwise.

Remark. Dijkstra’s algorithm may fail if there are negative weights. These cases are investi-
gated in the next section.

5.5 The Lightest Path: Floyd’s Algorithm

Problem. We are to find the lighest path from vertexu to vertexv (6= u) in a digraph or to show
that there is no such path when the arcs of the digraph have been assigned arbitrary weights.
Note that the weight of a directed path is the sum of the weights of the arcs traversed.

Obviously, we can assume there are no loops or parallel arcs.Otherwise, we simply remove the
loops and choose the arc with the lowest weight out of the parallel arcs. Floyd’s Algorithm only
works for digraphs. We write the weight of(x, y) asα(x, y) and construct theweight matrix
W = (wij) where

wij =

{

α(vi, vj) if there is an arc(vi, vj)

∞ otherwise.

(Once again,V = {v1, . . . , vn} is the vertex set of the digraph.) Floyd’s Algorithm is similar
to Warshall’s Algorithm. It only works if the digraph has no negative cycles, i.e. no directed
circuit in the digraph has a negative weight. In this case, the lightest directed path is the lightest
directed walk.

Floyd’s Algorithmconstructs a sequence of matricesW0,W1, . . . ,Wn whereW0 = W

and

(Wk)ij = weight of the lightest directedvi–vj path,
where there are only verticesv1, . . . , vk on the path besidesvi andvj

(=∞ if there is no such path).

Statement. WhenWk is computed fromWk−1 by the formula

(Wk)st = min{(Wk−1)st, (Wk−1)sk + (Wk−1)kt},

then we get the previously mentioned sequence of weight matrices. If the digraph has negative
cycles, then the sequence is correct up to the point when one of the diagonal elements turns
negative for the first time.

Proof. We use induction onk.
Induction Basis: k = 1. Since the digraph is loopless, the diagonal elements ofW0 can only

be∞ and the lightest directed path (if there is one) is one of the following, and the statement is
obvious:

s t: vs vt vs
v1

vt

s = t: vs v1

CHAPTER 5. GRAPH ALGORITHMS 64

Induction Hypothesis: The statement is true fork < ℓ. (ℓ ≥ 2)
Induction Statement: The statement is true fork = ℓ.
Induction Statement Proof: The diagonal elements ofWℓ−1 have to be nonnegative (∞ is

permitted) for us to get thisk. Let us consider the case wheres 6= t. (The cases = t is
analogous.) We have five cases:

• Vertex vℓ is on the lightest directed path but it is notvs or vt, i.e. ℓ 6= s, t. Let us
consider the directed subpath fromvs to vℓ whose vertices other thanvs andvℓ are in
{v1, . . . , vℓ−1}. Suppose the lightest directedvs–vℓ path of this kind has common vertices
with the directed subpath fromvℓ to vt other thanvℓ itself, e.g.vp. The directedvs–vp–
vℓ–vt walk we get would be lighter than the original directedvs–vt path. By removing
cycles, we would get a directedvs–vt path that would be lighter and would only contain
vs as well asvt and the verticesv1, . . . , vℓ (

√

). (We have to remember that weights of
cycles are not negative!) Therefore, the directed subpath from vs to vℓ is the lightest di-
rectedvs–vℓ path which contains the verticesv1, . . . , vℓ−1 as well asvs andvℓ. Similarly,
the directed subpath fromvℓ to vt is the lightest directedvℓ–vt path which contains the
verticesv1, . . . , vℓ−1 as well asvt andvℓ. Now, we use the Induction Hypothesis:

(Wℓ)st < (Wℓ−1)st

(check the special case(Wℓ−1)st =∞) and

(Wℓ)st = (Wℓ−1)sℓ + (Wℓ−1)ℓt.

• The directedvs–vt path with the lowest weight exists andvℓ = vs. By the Induction
Hypothesis,(Wℓ)st = (Wℓ−1)st and

(Wℓ−1)sℓ + (Wℓ−1)ℓt = (Wℓ−1)ℓℓ + (Wℓ−1)ℓt ≥ (Wℓ−1)ℓt = (Wℓ−1)st,

since(Wℓ−1)ℓℓ ≥ 0 (possibly=∞).

• The directedvs–vt path exists andvℓ = vt. By the Induction Hypothesis,(Wℓ)st =
(Wℓ−1)st and

(Wℓ−1)sℓ + (Wℓ−1)ℓt = (Wℓ−1)sℓ + (Wℓ−1)ℓℓ ≥ (Wℓ−1)sℓ = (Wℓ−1)st,

since(Wℓ−1)ℓℓ ≥ 0 (possibly=∞).

• The lightest directedvs–vt path exists butvℓ is not on the path. Now, we construct the
lightest directedvs–vℓ path and the lightestvℓ–vt path which, in addition to the end ver-
tices, contain only verticesv1, . . . , vℓ−1, if it is possible. By combining these two paths,
we get a directedvs–vt walk. By removing possible cycles from this walk, we get an as
light or even lightervs–vt path, which only contains verticesv1, . . . , vℓ as well asvs and
vt. (We have to remember that weights of cycles are not negative!) Therefore, this is a
case where

(Wℓ−1)sℓ + (Wℓ−1)ℓt ≥ (Wℓ−1)st

and the equation in the statement gives the right result. If there is no directedvs–vℓ path
or vℓ–vt path, then it is obvious.

• The lightest directedvs–vt path does not exist. Then,(Wℓ)st = ∞ and(Wℓ−1)st = ∞.
On the other hand, at least one of the elements(Wℓ−1)sℓ or (Wℓ−1)ℓt is = ∞ because
otherwise we would get a directedvs–vt path by combining thevs–vℓ path with thevℓ–vt
path as well as removing all possible cycles (

√

).

CHAPTER 5. GRAPH ALGORITHMS 65

Floyd’s Algorithm also constructs another sequence of matricesZ0, . . . ,Zn in which we
store the lightest directed paths in the following form

(Zk)ij =



















ℓ wherevℓ is the vertex followingvi on the lightest directed
vi–vj path containing only verticesvi andvj as well asv1, . . . , vk
(if such a path exists)

0 otherwise.

Obviously,

(Z0)ij =

{

j if (W)ij 6=∞

0 otherwise.

The matrixZk (k ≥ 1) of the sequence can be obtained from the matrixZk−1 by

(Zk)ij =

{

(Zk−1)ik if (Wk−1)ik + (Wk−1)kj < (Wk−1)ij

(Zk−1)ij otherwise,

so the sequence can be constructed with the sequenceW0,W1, . . . ,Wn at the same time.
Finally, Floyd’s Algorithm is presented in the following pseudocode. We have added a part
to test if there are negative elements on the diagonal and theconstruction of theZ0, . . . ,Zn

sequence of matrices.

procedure Floyd
begin

W := W0

k := 0
for i := 1 to n do

for j := 1 to n do
if (W)ij =∞ then

(Z)ij := 0
else

(Z)ij := j
fi

od
od
while k < n and Test(W) do

Iteration(W,Z, k)
od

end

subprocedureTest(W)
begin

for i := 1 to n do
if (W)ii < 0 then

return FALSE
fi

od
return TRUE

end

CHAPTER 5. GRAPH ALGORITHMS 66

subprocedureIteration(W,Z, k)
begin

k := k + 1
for i := 1 to n do

for j := 1 to n do
if (W)ik + (W)kj < (W)ij then

(W)ij := (W)ik + (W)kj
(Z)ij := (Z)ik

fi
od

od
end

5.6 The Lightest Spanning Tree: Kruskal’s and Prim’s Algo-
rithms

Problem. We have to find the spanning tree with the lowest weight of a connected graph if the
edges of the graph have been weighted arbitrarily and the weight of a tree is the sum of all the
weights of the branches.

Obviously, we can assume that the graphG = (V,E) is nontrivial and simple. Otherwise, we
simply remove the loops and choose the edge with the lowest weight out of the parallel edges.
We denote the weight of the edgee asα(e) and the weight of the spanning treeT asγ(T).
As usual, we write the number of vertices asn, number of edges asm, V = {v1, . . . , vn} and
E = {e1, . . . , em}.

Thedistancebetween two spanning treesT1 andT2 of G is

n− 1−#(T1 ∩ T2) =def. d(T1, T2),

where#(T1∩T2) is the number of edges in the intersection ofT1 andT2. Obviously,d(T1, T2) =
0 if and only if T1 = T2. If d(T1, T2) = 1, thenT1 andT2 areneighboring trees.

The spanning treeT of G is cut minimalif the weights of the edges of the fundamental
cut set determined by the branchb are≥ α(b) for every branchb. Similarly, the spanning tree
T is circuit minimal if the edges of the fundamental circuits are≤ α(c) for every link c in
the cospanning treeT ∗. The spanning treeT is locally minimal if γ(T) ≤ γ(T ′) for every
neighboring treeT ′ of T .

Lemma. The following three conditions are equivalent for the spanning treeT :

(i) T is cut minimal.

(ii) T is circuit minimal.

(iii) T is locally minimal.

Proof. (i)⇒(ii): Let us assumeT is cut minimal and let us consider a fundamental circuitC of
G corresponding to the linkc of the cospanning treeT ∗. Other thanc, the branches inC are
branches ofT . Every such branchb defines a fundamental cut set ofT , which also containsc
(Theorem 2.7). Henceα(b) ≤ α(c).

(ii)⇒(iii): Let us assume thatT is circuit minimal and let us consider a neighboring treeT ′

of T . T ′ has (exactly one) branche′ which is not inT , i.e. e′ is a link of T ∗. We examine the

CHAPTER 5. GRAPH ALGORITHMS 67

fundamental circuitC defined bye′. Not all edges ofC are inT ′. We choose an edgee in C
that is not inT ′. Then,e is a branch ofT (actually the only branch ofT that is not inT ′). Now,
we removee out ofT and adde′ to T . The result has to beT ′. Because of circuit minimality,
α(e′) ≥ α(e), i.e.γ(T ′) ≥ γ(T).

(iii)⇒(i): We consider the locally minimal spanning treeT . We take an arbitrary branch
b from T corresponding to a fundamental cut setI and an arbitrary linkc 6= b in I. Then,b
belongs to the fundamental circuit ofT defined byc (Theorem 2.8). By removing the branch
b from T and adding the edgec to T , we get the neighboring treeT ′ of T . Because of local
minimality,γ(T) ≤ γ(T ′), i.e.α(c) ≥ α(b).

The spanning treeT is minimal if it has the lowest possible weight.

Theorem 5.2.The following three conditions are equivalent for the spanning treeT :

(i) T is cut minimal.

(ii) T is circuit minimal.

(iii) T is minimal.

Proof. By the lemma above, (i) and (ii) are equivalent. A minimal spanning tree is obviously
locally minimal. Thus, it suffices to prove that a cut minimalspanning tree is also minimal.
We will prove by contradiction and consider the counter hypothesis: There is a cut minimal
spanning treeT which is not minimal. Let us consider the minimal spanning treeT ′ and choose
T andT ′ so that the distanced(T, T ′) is as small as possible. By the lemma,d(T, T ′) > 1.

T has a branche which is not inT ′, i.e. it is a link of (T ′)∗. We label the fundamental
cut set ofT defined bye as I and the fundamental circuit ofT ′ defined bye asC. In the
intersectionI ∩C, there are also other edges besidese (Theorem 2.6). We choose such an edge
e′. Then,e′ is a link of T ∗ and a branch ofT ′. SinceT is cut minimal,α(e′) ≥ α(e). Since
T ′ is (circuit) minimal,α(e′) ≤ α(e). Therefore,α(e′) = α(e). By removinge′ from T ′ and
addinge to T ′, we get a minimal spanning treeT ′′ which has the same weight asT ′. However,
d(T, T ′′) < d(T, T ′).

√

In Kruskal’s Algorithm, the edges of the graphG (and their weights) are listed ase1, . . . , em.
The algorithm constructs a circuit minimal spanning tree bygoing through the list to take some
edges to form the tree. This is especially effective if the edges are sorted in ascending order by
weight.

In thedual form of Kruskal’s Algorithm, we construct a cut minimal spanning tree by going
through the list of edges to take some edges to form the cospanning tree. Once again, this is
especially effective if the edges are sorted in descending order by weight.

In all, we get four different versions of Kruskal’s Algorithm. (We have to remember that the
subgraph induced by the edge setA is written as〈A〉.)

Kruskal’s Algorithm No. 1

Here we assume that the edges are given inascending orderby weight.

1. Setk ← 1 andA← ∅.

2. If ek does not form a circuit with the edges inA, then setA ← A ∪ {ek} as well as
k ← k + 1 and go to step #4.

3. If ek forms a circuit with the edges inA, then setk ← k + 1 and go to step #4.

CHAPTER 5. GRAPH ALGORITHMS 68

4. If (V,A) is not a tree, then go to step #2. Otherwise stop and output thespanning tree
T = 〈A〉.

Whenever we leave out an edge fromA (step #3), its end vertices are already connected inA.
Thus, the vertices ofG are connected inT as they are inG. SinceT is obviously circuitless
(step #3), it is also a spanning tree ofG. At each stage, the branches of the fundamental circuit
defined by the link belonging toT ∗ (step #3) are predecessors of that link in the list. Hence,T
is circuit minimal and thus minimal.

Remark. In every step, the branches and links are permanent. We do nothave to know the
edges beforehand as long as we process them one by one in ascending order. The rank of the
graph (number of branches in a spanning tree) is then required beforehand so we know when to
stop.

Kruskal’s Algorithm No. 2

Here we assume the edges are given in anarbitrary order.

1. Setk ← 1 andA← ∅.

2. If 〈A ∪ {ek}〉 contains no circuits, then setA ← A ∪ {ek} as well ask ← k + 1 and go
to step #4.

3. If 〈A∪ {ek}〉 contains a circuitC, then choose the edge with the largest weighte in C (if
there are more than one, take any), setA← (A ∪ {ek})− {e} as well ask ← k + 1 and
go to step #4.

4. If k ≤ m, then go to step #2. Otherwise, stop and output the spanning treeT = 〈A〉.

Whenever we leave out an edge fromA (step #3), its end vertices are already connected inA.
Thus, the vertices ofG are connected inT as they are inG. SinceT is obviously circuitless
(step #3), it is a spanning tree ofG.

We see thatT is circuit minimal (and minimal) by the following logic. During the whole
process,〈A〉 is a forest by step #4. In addition, ifu andw are connected in〈A〉 at some point,
then they are also connected afterwards. Theu–w path in〈A〉 is unique but it can change to
another path later in step #3. Nevertheless, whenever this change occurs, the maximum value
of the weights of the edges of the path can not increase anymore. Every linkc of T ∗ has been
removed fromA in step #3. Then, the weight ofc is at least as large as the weights of the other
edges inC, After we have gone through step #3, the only connected end vertices ofc in 〈A〉
have to go through the remaining edges ofC. The final connection between the end vertices of
c in T goes through the edges of the fundamental circuit defined byc. Therefore, the weights
of the edges of this fundamental circuit are≤ α(c).

Remark. In each step, the links (e in step #3) are permanent and the branches are not. We do
not have to know the edges beforehand as long as we process them one by one. However, we
need to know the nullity of the graph (number of links in a cospanning tree) so that we know
when to stop. The algorithm can also be used to update a minimal spanning tree if we add edges
to the graph or decrease their weight.

CHAPTER 5. GRAPH ALGORITHMS 69

Kruskal’s Algorithm No. 3

Here we assume the edges are given indescending orderby weight.

1. SetA← E andk ← 1.

2. If (V,A − {ek}) is connected, then setA ← A − {ek} as well ask ← k + 1 and go to
step #4.

3. If (V,A− {ek}) is disconnected, then setk ← k + 1 and go to step #4.

4. If (V,A) is not a tree, then we go to step #2. Otherwise we stop and output the spanning
treeT = (V,A).

T is obviously connected because(V,A) is connected everytime we go to step #4. On the other
hand,T is circuitless because if the circuitC is in T and the edgec is in the circuit, thenc is
removed fromA in step #2 whenek = c (

√

). Thus,T is a spanning tree ofG. In each step, the
links of the fundamental cut set defined by the branch belonging toT (step #3) are predecessors
of that branch in the list. Hence,T is cut minimal and it is thus minimal.

Remark. In each step, the branches and links are permanent. We have toknow the edges
beforehand. On the other hand, we do not have to know their weights as long as we get them
one by one in descending order.

Kruskal’s Algorithm No. 4

Here we assume the edges are given in anarbitrary order.

1. SetA← E andk ← 1.

2. If (V,A − {ek}) is connected, then setA ← A − {ek} as well ask ← k + 1 and go to
step #4.

3. If (V,A − {ek}) is disconnected, then it has two components. The corresponding vertex
sets form a cut〈V1, V2〉. We interpret it as an edge set and choose the edgee with the
lowest weight in〈V1, V2〉 (if there are more than one, take any). SetA← (A−{ek})∪{e}
as well ask ← k + 1 and go to step #4.

4. If k ≤ m, then go to step #2. Otherwise stop and output the spanning treeT = (V,A).

T is obviously connected because(V,A) is connected everytime we go to step #4. (Take note
that the connectivity is preserved everytime we go through step #3.) On the other hand,T is
circuitless. If a circuitC of G ends up inT andc is the edge ofC, which is first in the list,
thenc must be removed fromA in step #2 whenek = c. (Note that the edge removed from the
circuit first can not be removed in step #3.) Ifc comes back later (in step #3), then it forms a
cut set of(V,A) by itself in which case some other edge ofC has been removed. By continuing
this process, we see that all the edges ofC can not be inA in the end (

√

). Therefore,T is a
spanning tree ofG.

In addition,T is cut minimal and minimal because every branchb of T comes in in step
#3. The links of the fundamental cut set defined byb are either edges of the cut〈V1, V2〉 which
is examined at that point or they are links of the cuts we examined later in step #3. Whenever
an edge of this kind gets removed later in step #3, it is alwayscompensated by edges that are
heavier in weight thanb. Those heavier edges are in the cut〈V1, V2〉 which is examined at that
time. Therefore, the weights of the fundamental cut set defined byb are≥ α(b).

CHAPTER 5. GRAPH ALGORITHMS 70

Remark. In each step, the branches (e in step #3) are permanent and the links are not. We
have to know the edges beforehand. We do not have to know the weights beforehand as long as
we process them one by one. This algorithm can also be used forupdating a minimal spanning
tree if we remove edges from a graph or if we increase the weights of edges.

Prim’s Algorithm

In Prim’s Algorithm(also known asJarnik’s Algorithm), we use the all-vertex incidence ma-
trix of G. If we label the set of edges incident on vertexv asΩ(v), then we can get a list
Ω(v1), . . . ,Ω(vn), i.e. the cuts defined by the vertices (interpreted as edge sets). In addition, we
assign weights to the vertices.

The algorithm works in the same way as Dijkstra’s Algorithm by constructing the spanning
tree branch by branch. The variables areA (set of branches of the spanning tree we have at the
time),B (set of vertices of the spanning tree we have at the time) andI (the cut interpreted as
an edge set from which we choose the next branch).

Prim’s Algorithm (First Version):

1. Choose a starting vertexr and setA← ∅, B ← {r} as well asI ← Ω(r).

2. Choose the lightest edgee from I (if there are more than one, choose any). Take the end
vertexv of e that is not inB. SetA← A ∪ {e}, B ← B ∪ {v} as well asI ← I ⊕ Ω(v)
and go to step #3. (Remember that⊕ denotes the symmetric difference operation between
two sets, see page 12.)

3. If B 6= V , then go to step #2. Otherwise, stop and output the spanning treeT = (B,A) =
〈A〉.

Since the edgee was chosen from a cut,T is circuitless. On the other hand, because there is
a path fromr to every other vertex,T has every vertex ofG and it is connected.T is thus a
spanning tree. It is also minimal because

Statement. During the whole process,(B,A) is a subtree of some minimal spanning tree ofG.

Proof. We use induction onℓ, the number of vertices inB.
Induction Basis: ℓ = 1. The case is obvious because(B,A) is trivial.
Induction Hypothesis: The statement is true forℓ = k − 1. (k ≥ 2)
Induction Statement: The statement is true forℓ = k.
Induction Statement Proof: In step #2, we can writeA = A′ ∪ {e}, wheree ∈ I ′ and

B = B′ ∪ {v}. (B′, A′) is a subtree of some minimal spanning treeTmin from the induction
hypothesis. Ife belongs toTmin, then the case is clear. Otherwise, there is a fundamental circuit
C in Tmin + e and there is another edgee′ of I ′ in C (Theorem 2.6). Then,α(e′) ≥ α(e) and
(Tmin + e)− e′ is also a minimal spanning tree and(B,A) is its subtree (becauseTmin is circuit
minimal andα(e′) ≤ α(e)).

Often, we use one or two additional labels for the vertices tomake Prim’s Algorithm easier.
In the next version of the algorithm, we will use two labelsπ(v) andβ(v), which are used to
perform step #2 more effectively. The values ofπ are weights (up to∞) and the values ofβ are
edges (or= 0). Otherwise, the algorithms works in the same way as before.

CHAPTER 5. GRAPH ALGORITHMS 71

Prim’s Algorithm (Second Version):

1. Choose a starting vertexr and setπ(r) ← 0. For every other vertexv, setπ(v) ← ∞.
For every vertexv, setβ(v)← 0 as well asA← ∅ andB ← ∅.

2. Choose a vertexu /∈ B for which

π(u) = min
v/∈B
{π(v)}.

SetB ← B ∪ {u}. If β(u) 6= 0, then setA← A ∪ {β(u)}.

3. Go through all the edgese = (u, v) wherev /∈ B. If α(e) < π(v), then setπ(v) ← α(e)
andβ(v)← e.

4. If B 6= V , then go to step #2. Otherwise, stop and output the spanning treeT = (B,A) =
〈A〉.

5.7 The Lightest Hamiltonian Circuit (Travelling Salesman’s
Problem): The Annealing Algorithm and the Karp–Held
Heuristics

Problem. If it is possible, we are to find theHamiltonian circuitwith the lowest weight. A
Hamiltonian circuit visits all the vertices of a graph. As usual, the weights of the edges have
been assigned and the weight of a (directed) circuit is the sum of the weights of the edges
traversed.

Obviously, we can assume that the graph is nontrivial, connected (otherwise it would not be
possible to get a Hamiltonian circuit) and simple. If not, then we simply remove all the loops
and choose the edge with the lowest weight out of the paralleledges. As usual, we denoten as
the number of vertices,m as the number of edges,V = {v1, . . . , vn} andE = {e1, . . . , em}.
We label the weight of an edgee = (vi, vj) asα(e) = α(vi, vj) and the weight of a Hamiltonian
circuitH asγ(H). We agree that the ”first” vertex of a Hamiltonian circuit isv1.

The same problem exists for directed graphs in which case we are looking for the directed
Hamiltonian circuit with the lowest weight (known as theUnsymmetric Travelling Salesman’s
Problem).

The Travelling Salesman’s Problem (TSP)1 is anNP-complete problem, read e.g. MEHL-
HORN for more information. Actually, even deciding the existence of a Hamiltonian circuit is
anNP-complete problem. Solving a small TSP takes a lot of time andlarger problems take so
much time that it is almost impossible to obtain accurate solutions. Therefore, many stochastic
and approximation methods are used in practice. Then, we have to accept the possibility of
inaccurate outcomes or even the lack of results.

1The name ”Travelling Salesman’s Problem” comes from an interpretation where the vertices of a graph are
cities and the weights of the edges between the cities are travelling times. The salesman needs to visit every city
in the shortest amount of time.

CHAPTER 5. GRAPH ALGORITHMS 72

The Annealing Algorithm

Theannealing algorithmsor thermodynamic algorithmshave the following common features:

(A) The system in question is always in somestates. The set of all statesS is finite and
known. In the TSP, a state is a Hamiltonian circuit.

(B) Each states has aresponsef(s), which can be calculated in a timely fashion from the
state. Our goal is to find a state whose response is near the minimum/maximum value.
The response of a state of a TSP is the weight of a Hamiltonian circuit.

(C) There is a procedureAk which is used to move from states to stateAk(s). k is a parameter
of the procedure which belongs to the setK. K can change during the procedure. The
purpose is to move to certain states ”near” the states which are defined by the parameter
k. By repeating the procedure with proper values ofk, we should be able to move from
any state to any other state. (In some cases, we can omit this last part.)

(D) Every time we move from one state to another, we should be able to choose the param-
eter k quickly and randomly fromK. In particular, the setK itself should be easily
computable.

(E) We should be able to quickly perform the procedureAk given a value ofk.

(F) We should be able to find a starting states0. For the TSP, the starting state is a Hamiltonian
circuit.

The algorithm is as follows:

The Annealing Algorithm:

1. Choose the starting states0, theinitial temperatureT0 and sets← s0 as well asT ← T0.

2. When we are in the states, we randomly choose a parameterk ∈ K and computes′ =
Ak(s).

3. If f(s′) ≤ f(s), then sets← s′ and go to step #5.

4. If f(s′) > f(s), then generate a random numberr in the interval[0, 1). If r ≤ e
f(s)−f(s′)

T ,
then sets← s′. Thus, we accept a ”worse” state with probabilitye

f(s)−f(s′)

T . Note that the
greater the temperatureT , the greater the probability that we go ”uphill”.

5. If we have gone through a maximum total number of iterations, then we stop and output
s. Otherwise, if we have gone through sufficiently many iterations of the procedure using
temperatureT , then we lowerT by some rule and go to step #2.

Remark. The distribution of the probabilityps′ = e
f(s)−f(s′)

T used in step #4 is (apart from
normalizing) a so-calledmaximum entropy distributionwith the following condition on the
expected value:

∑

s′=Ak(s)
k∈K

f(s′)>f(s)

ps′f(s
′) = µ

whereµ depends onT ands. The distribution is also called aBoltzman distributionand it is
analogous to the distribution of the same name in Statistical Mechanics. Refer to courses in
Physics and Information Theory for more information.

CHAPTER 5. GRAPH ALGORITHMS 73

At first, we wait until the fluctuation in the states settles toa certain equilibrium (using the
responsef(s)). After that, we lower the value ofT a bit and wait again for the equilibrium.
Then, we lowerT again and so on. We continue this until the change in values off(s) is
sufficiently small or if we have ran out of time.

The operationAk and the setK of the neighboring states depend on the problem. The state
structure and the response function also depend on the problem. For the TSP, we still need to
assignAk andK for every situation. For this purpose, we take another parameter j and set
j ← 2. In step #2, we updatej in the following way:

j ←

{

j + 1 if j < n

2 otherwise.

(Another way of choosingj in step #2 would be to choose it randomly out of{2, . . . , n}.)
Furthermore, we choose

K = {2, . . . , n} − {j}.

Ak is defined by the following operation (known as thereversal):

• If k > j, then we reverse the order of the verticesvij , . . . , vik on the corresponding
subpath in the current Hamiltonian circuit

s : v1, vi2, . . . , vin, v1.

• If k < j, then we reverse the order of the verticesvik , . . . , vij on the corresponding
subpath in the current Hamiltonian circuit

s : v1, vi2, . . . , vin, v1.

We add the missing edges to the graph with very large weights so that we get a complete
graph and we will not have to worry about the existence of a Hamiltonian circuit in the first
place. If we still do not get a Hamiltonian circuit in the end without those added edges, then
there is not a Hamiltonian circuit.

The starting temperatureT0 should be much larger than the values of|f(s′) − f(s)| which
guarantees that we can in principle move to any state (”annealing”) in the earlier stages of the
algorithm. After that, we lower the temperature applying some rule, for example a 10% change.

The annealing algorithm also works for the unsymmetric TSP with obvious changes.

Karp–Held Heuristics

In theKarp–Held Heuristics, we do not directly look for a Hamiltonian circuit but look for a
similar subgraph, known as aspanning 1-tree2. The process does not work for the unsymmetric
TSP. The spanning 1-treeSv corresponding to the vertexv (known as thereference vertex) is a
subgraph ofG that satisfies the following conditions:

(a) Sv is connected and contains every vertex ofG.

(b) Sv contains exactly one circuitC and the vertexv belongs toC.

(c) Sv has exactly two edges incident onv.

2Not to be confused with the 1-tree on p. 23!

CHAPTER 5. GRAPH ALGORITHMS 74

Clearly, a Hamiltonian circuit is a spanning 1-tree corresponding to any of the vertices. The
weightof the spanning 1-treeSv is the sum of of the weights of all its edges, denotedγ(Sv). Sv

is minimal if it has the lowest possible weight.

Statement.Sv is minimal if and only if

(i) Sv − v is a minimal spanning tree ofG− v, and

(ii) the two edges ofSv incident onv are the two lightest edges ofG out of all the edges
incident onv.

Proof. Let Sv be a minimal spanning 1-tree. Lete ande′ be the two edges inSv incident on
v. Then,Sv − v is a spanning tree ofG − v because removingv destroys the circuit but the
connections remain unsevered. IfSv − v is not a minimal spanning tree ofG− v then there is
a lighter spanning treeT of G− v. By adding the vertexv and the edgese ande′ to T , we get a
spanning 1-tree corresponding to vertexv which is lighter thanSv (

√

). Therefore, (i) is true.
Obviously, (ii) is true (because otherwise we would get a lighter spanning 1-tree by replacinge
ande′ with the two lightest edges inG incident onv).

Let us assume that (i) and (ii) are true. IfSv is not minimal, then there is a lighter minimal
spanning 1-treeS ′

v corresponding tov. BecauseS ′

v also satisfies (ii), the two edges incident on
v are the same (or at least they have the same weight) inSv andS ′

v. Thus,S ′

v − v is lighter than
Sv − v (

√

).

It follows from the statement that any algorithm that finds the minimum spanning tree also
works for finding the minimum spanning 1-tree with minor modifications. Especially, Kruskal’s
and Prim’s Algorithms are applicable.

In the Karp–Held Heuristics, we also use weights of vertices, denotedβ(v). With these, we
can define thevirtual weightof an edge as

α′(vi, vj) = α(vi, vj) + β(vi) + β(vj).

With the concept of virtual weights, we get the virtual weight of a spanning 1-treeSv (we label
the edge set ofSv asA):

γ′(Sv) =
∑

(vi,vj)∈A

α′(vi, vj) =
∑

(vi,vj)∈A

α(vi, vj) +
∑

(vi,vj)∈A

(β(vi) + β(vj))

= γ(Sv) +
∑

(vi,vj)∈A

(β(vi) + β(vj)).

Now we denote the degree of the vertexu in Sv asdSv
(u). Then,

∑

(vi,vj)∈A

(β(vi) + β(vj)) =
n

∑

i=1

β(vi)dSv
(vi)

and

γ′(Sv) = γ(Sv) +

n
∑

i=1

β(vi)dSv
(vi).

In particular, if we have a Hamiltonian circuitH (a special spanning 1-tree), then

dH(v1) = · · · = dH(vn) = 2

CHAPTER 5. GRAPH ALGORITHMS 75

and

γ′(H) = γ(H) + 2
n

∑

i=1

β(vi)

︸ ︷︷ ︸

Does not depend onH!

.

Minimization of the Hamiltonian circuits using virtual weights yields the same minimal circuit
than obtained by using real weights. In general though, if weuse virtual weights to search for
spanning 1-trees, then we get results different from the spanning 1-trees obtained by using real
weights.

From now on, we only consider the spanning 1-tree corresponding to vertexv1 and we leave
out the subscript. This is not a limitation of any kind on the Hamiltonian circuits although it
might be a good idea to change the reference vertex every now and then. We assume thatHmin

is a minimal Hamiltonian circuit andS ′ is the minimal spanning 1-tree obtained from using
virtual weights (which of course corresponds tov1). Then,

γ′(Hmin) ≥ γ′(S ′).

In addition,

γ′(Hmin) = γ(Hmin) + 2
n

∑

i=1

β(vi)

and

γ′(S ′) = γ(S ′) +
n

∑

i=1

β(vi)dS′(vi).

Thus,

γ(Hmin) = γ′(Hmin)− 2

n
∑

i=1

β(vi) ≥ γ′(S ′)− 2

n
∑

i=1

β(vi)

= γ(S ′) +
n

∑

i=1

β(vi)(dS′(vi)− 2),

from which we get alower limit onγ(Hmin).
The idea of the Karp–Held Heuristics is to guide the degrees of the vertices inS ′ to the value

2 by changing the weights of the vertices. If we succeed, then we get a minimal Hamiltonian
circuit. In all cases, we get a lower limit on the weightsγ(H) of the (possible) Hamiltonian
circuits by using the calculation above. (Note thatdS′(v1) is always= 2 if S ′ is the spanning
1-tree corresponding tov1.)

The Karp–Held Heuristics:

1. Setβ(v)← 0 for every vertexv.

2. Setα′(u, v)← α(u, v) + β(u) + β(v) for each edge(u, v).

3. Find the minimal spanning 1-treeS ′ using virtual weightsα′(u, v). If we fail to find this
kind of spanning 1-tree, then there is no Hamiltonian circuit and we can stop.

4. If S ′ is a circuit, then output the minimal Hamiltonian circuitH = S ′ and stop.

5. If S ′ is not a circuit and the lower limit calculated fromS ′ increased during the lastK
iterations, then setβ(v)← β(v) + dS′(v)− 2 for every vertexv and go to step #2. (K is
a fixed upper bound on the number of iterations.)

CHAPTER 5. GRAPH ALGORITHMS 76

6. If the lower limit calculated fromS ′ has not increased during the lastK iterations, then
output that lower limit and stop.

This procedure does not always produce a minimal Hamiltonian circuit even if there exists
one. In practice, it often produces either a minimal Hamiltonian circuit or a good lower limit on
the weight of it. Getting a number for the lower limit does not, however, guarantee the existence
of a Hamiltonian circuit in the graph!

Karp–Held Heuristics has many steps where we have to choose between different options
(such as the reference vertex and the spanning 1-tree). We can not go through every possibility
so we must choose randomly. Then, we have a Las Vegas algorithm or stochastic algorithm.

5.8 Maximum Matching in Bipartite Graphs: The Hungar-
ian Algorithm

A matchingin the graphG = (V,E) is a set of edgesS ⊆ E none of which are adjacent to each
other. A matching is amaximum matchingif it has the greatest possible number of edges. The
end vertex of an edge in a matching ismatched.

Problem. We want to find the maximum matching in a bipartite graph.

An alternating pathof a matchingS is a path that satisfies the following conditions:

(1) The first vertex on the path is not matched, and

(2) every second edge is in the matching and the remaining edges are not in the matching.

Note that the first edge in an alternating path is not in the matching. In addition, if the last vertex
of an alternating path is not matched, then this path is anaugmenting pathof S. A matching
without augmenting paths is called amaximal matching.

Example. For the bipartite graph

v1
v2

v3

v4

v5

w1

w2

w3

w4

w6

w5

G: S:

v1
v2

v3

v4

v5

w1

w2

w3

w4

w6

w5

one augmenting path of the matchingS = {(v1, w3), (v3, w2), (v4, w6), (v5, w5)} is the path
where the vertices arev2, w2, v3, w6, v4, w1.

v1
v2

v3

v4

v5

w1

w2

w3

w4

w6

w5

CHAPTER 5. GRAPH ALGORITHMS 77

We canaugmenta matchingS using its augmenting pathp as follows:

1. We remove the edges ofS in p, and

2. We add the edges inp which are not inS.

The new edge set is obviously a matching. Note that the numberof edges inS on an augmenting
path is one fewer than the number of the remaining edges. Therefore, the number of edges in
a matching increases by one after the augmenting operation.It is not possible to augment a
maximal matching.

Example. (Continuing from the previous example) By using the given augmenting path from
the matchingS, we get a new maximal matchingS1 = {(v1, w3), (v2, w2), (v3, w6), (v4, w1),
(v5, w5)}.

w1

w2

w3

w4

w6

w5

v1
v2

v3

v4

v5

In the Hungarian Algorithm, we systematically search for augmenting paths until we get
a maximal matching. After that, it suffices to prove that a maximal matching is a maximum
matching. From now on, we only considerbipartite graphsbecause the algorithm is then much
simpler. We search for augmenting paths by constructing analternating treeof a matchingS
which is a subtree ofG such that

(1) a vertexr (theroot of the tree) is unmatched,

(2) every second edge on each path out fromr is in S and the remaining edges are not inS,
and

(3) either there is an augmenting path out fromr or we can not add any more edges toS.

An alternating tree is anaugmenting treeif it has an augmenting path. Otherwise, it is aHun-
garian tree. Every augmenting path is obviously an augmenting tree by itself. Note that the
only unmatched vertex of a Hungarian tree is the root.

Example. (Continuing from the previous example) Two alternating trees of the matchingS are
(the root is circled):

w1

w2

w4

w6

v2

v3

v4

v2

v3

v4

w2

w4

w6

CHAPTER 5. GRAPH ALGORITHMS 78

Both of them are augmenting trees. An alternating tree of thematchingS1 (the root isw4) is the
Hungarian tree

v1

v4

w1

w3

w4

Augmenting and Hungarian trees are not unique. We can have many different trees depend-
ing on the order we take the edges for constructing the trees even though the roots are the same.
On the other hand,

Statement. If a matching in a bipartite graphG has a Hungarian tree, then it does not have an
augmenting tree with the same root.

Proof. Let us prove by contradiction and consider the counter hypothesis: A matchingS has a
Hungarian treeU and an augmenting treeT with the same rootr. We get an augmenting path
in the augmenting tree

p : r = v0, e1, v1, e2, . . . , ek, vk.

We choose the last vertexvi which is inU from the pathp (at leastr = v0 is in U). Since
vk is not inU , i < k. Furthermore, the edgeei+1 is not in the matching nor inU (otherwise
vi+1 would also be inU). On the other hand, sinceei+1 is not inU , vi+1 has to be an end
vertex of another edge inU (

√

) because the only reason why the edgeei+1 is not put intoU
while constructingU is that the other end vertexvi+1 of ei+1 is already inU . Note how the
bipartiteness of theG comes in: If the cut inG that results in the bipartition is〈V1, V2〉, then the
vertices ofU andp alternate betweenV1 andV2. Therefore, the length of ther–vi path is even
in p andU .

Constructing an alternating tree from a root always leads toa Hungarian tree or an augmenting
tree but not both. The order of the edges taken does not matter. (This is not the case for general
graphs.)

For the bipartite graphG = (V,E), the Hungarian Algorithm is as follows. The cut that
yields the bipartition is〈V1, V2〉.

The Hungarian Algorithm:

1. SetS ← ∅. (We can also use some other initial matching.)

2. If every vertex inV1 or in V2 is matched inS, thenS is a maximum matching and we
stop.

3. If there are unmatched vertices inS of V1, then go through them in some order construct-
ing alternating trees (the method of construction is not important as we claimed). If there
is an augmenting tree, then augmenting the matchingS by using the augmenting path we
have another matchingS1. SetS ← S1 and go to #2.

4. If all the alternating trees that have unmatched verticesin V1 as roots are Hungarian,S is
maximal and we stop.

CHAPTER 5. GRAPH ALGORITHMS 79

Theorem 5.3.A maximal matching in a bipartite graph is a maximum matching.

Proof. Let us prove by contradiction and consider the counter hypothesis: A maximal matching
S in the bipartite graphG = (V,E) is not a maximum matching. Then, there are more edges in
the maximum matchingSmax than inS and inV1 there are more vertices matched inSmax than
in S. We choose an arbitrary vertexv ∈ V1, which is matched inSmax but not inS. Then, we
have a path

p : v = v0, e1, v1, e2, . . . , ek, vk = w,

whose edges are alternating betweenSmax andS, i.e. e1 is in Smax ande2 is in S and so on.
We choose the longest such pathp. Becausep is obviously an alternating path ofS, it has
even length, i.e.ek is an edge ofS. (Otherwise,p would be an augmenting path ofS which is
impossible becauseS is maximal.) Thus,w is matched inS but not matched inSmax (because
the pathp can not be continued).

Hence, every vertexv ∈ V1 which is matched inSmax but not inS corresponds to a vertex
w ∈ V1, which is matched inS but not inSmax. Now, every path that ends atw must start
from the vertexv if the starting vertex is matched inSmax but not inS. The last edge of such a
path has to beek (the only edge inS incident onw) and the second to the last vertex has to be
vk−1. Furthermore, the second to the last edge of this path has to beek−1 (the only edge ofSmax

incident onvk−1) and the third to the last vertex has to bevk−2, and so on.
However, there are then inV1 at least as many verticesw that are matched inS but not in

Smax as there are verticesv that are matched inSmax but not inS (
√

).

Corollary. The Hungarian algorithm produces a maximum matching in a bipartite graph.

A matching isperfect if it matches every vertex of a graph. Thus, a graph with an odd
number of vertices can not have a perfect matching. Let us consider the graphG = (V,E) and
denoteν(v) = {adjacent vertices ofv} as well asν(A) =

⋃

v∈A ν(v) for the vertex setA ⊆ V .
Let us denote by#(X) the number of elements in the setX (the cardinality of the set). With
these notions, we can present the following famous characterization:

Theorem 5.4. (Hall’s Theorem or ”Marriage Theorem”) A bipartite graphG whose bipar-
tition cut is〈V1, V2〉 has a perfect matching if and only if every vertex setA ⊆ V1 andB ⊆ V2

satisfies the conditions#(A) ≤ #(ν(A)) and#(B) ≤ #(ν(B)).

Proof. If a perfect matching exists, then obviously#(A) ≤ #(ν(A)) and#(B) ≤ #(ν(B))
hold for all sets of verticesA ⊆ V1 andB ⊆ V2. (Otherwise, we can not find a pair for every
vertex inA orB in the matching.)

Let us assume that for all sets of verticesA ⊆ V1 andB ⊆ V2, #(A) ≤ #(ν(A)) and
#(B) ≤ #(ν(B)). Let S be a maximum matching inG. We will prove by contradiction
and consider the counter hypothesis: S is not perfect. We choose a vertexv which is not
matched inS. Let us examine the case wherev ∈ V1 (the other case wherev ∈ V2 is obviously
symmetrical). The contradiction is apparent ifv is an isolated vertex so we can move to the case
wherev is an end vertex of an edge. The alternating tree with the rootv is then nontrivial and
since the matching is also maximal, this tree is Hungarian. We choose such a Hungarian treeU .
We label the set of vertices ofV1 (resp.V2) in U byA (resp. byB). Because of the construction
of U , B = ν(A). On the other hand, the vertices ofA andB in U are pairwise matched by the
edges ofS, except for the rootr. Hence,#(A) = #(B) + 1 > #(B) (

√

).

CHAPTER 5. GRAPH ALGORITHMS 80

5.9 Maximum Flow in a Transport Network: The Ford–Ful-
kerson Algorithm

A transport networkis a directed graphG = (V,E) with weighted arcs that satisfies the fol-
lowing:

(1) G is connected and loopless,

(2) G has only one sources,

(3) G has only one sinkt, and

(4) the weightc(e) of the arce is called thecapacityand it is a nonnegative real number, i.e.
we have a mappingc : E → R0.

(Compare to stationary linear networks in Section 4.4.) Actually, we could assume thatG has
every possible arc except loops and it can even have multipleparallel arcs. If this is not the case,
then we simply add the missing arcs with capacity zero. Naturally, we can also assume thatG
is nontrivial.

A flowf of a transport network is a weight mappingE → R0, which satisfies:

(i) For each arce, we have thecapacity constraintf(e) ≤ c(e), and

(ii) each vertexv 6= s, t satisfies theconservation condition(also calledKirchhoff ’s Flow
Law, compare to Section 4.4)

∑

initial vertex
of e is v

f(e) =
∑

terminal vertex
of e is v

f(e).

f(e) is called theflow of e. The flow of the arc(u, v) is also denoted asf(u, v). Thevalueof
the flowf is

|f | =
∑

initial vertex
of e is s

f(e).

A flow f ∗ is amaximum flowif its value is the largest possible, i.e.|f ∗| ≥ |f | for every other
flow f .

An s–t cut of a transport networkS is a (directed) cutI = 〈V1, V2〉 such thats is in V1 and
t is in V2. Thecapacityof such a cut is

c(I) =
∑

u∈V1

v∈V2

c(u, v).

(Note that the arcs in the direction opposite to the cut do notaffect the capacity.) The capacity of
the cut〈V1, V2〉 is also denoted asc(V1, V2). Furthermore, we define thefluxof the cutI = 〈V1,
V2〉 as

f+(I) =
∑

u∈V1

v∈V2

f(u, v)

and thecounter-fluxas
f−(I) =

∑

u∈V2

v∈V1

f(u, v).

The value of a flow can now be obtained from the fluxes of anys–t cut:

CHAPTER 5. GRAPH ALGORITHMS 81

Theorem 5.5. If f is a flow of a transport network andI is ans–t cut, then

|f | = f+(I)− f−(I).

Proof. Obviously,
∑

initial vertex
of e is v

f(e)−
∑

terminal vertex
of e is v

f(e) =

{

|f | if v = s

0 if v 6= s, t.

We denoteI = 〈V1, V2〉. By going through the verticesv in V1 and by adding up the equations
we get

∑

v∈V1

∑

initial vertex
of e is v

f(e)−
∑

v∈V1

∑

terminal vertex
of e is v

f(e) = |f |.

For each arce whose end vertices are both inV1, f(e) and−f(e) are added exactly once and
thus they cancel out. Therefore,

∑

u∈V1

v∈V2

f(u, v)−
∑

u∈V2

v∈V1

f(u, v) = |f |.

Corollary. If f is a flow of a transport network andI is ans–t cut, then|f | ≤ c(I).

Proof. |f | = f+(I)− f−(I) ≤ f+(I) ≤ c(I).

An arc e of a transport network issaturatedif f(e) = c(e). Otherwise, it isunsaturated.
Now, we point out that|f | = c(V1, V2) if and only if

(i) the arc(u, v) is saturated wheneveru ∈ V1 andv ∈ V2, and

(ii) f(u, v) = 0 wheneveru ∈ V2 andv ∈ V1.

An s–t cut I∗ of a transport network is called aminimum cutif c(I∗) ≤ c(I) for every other
s–t cut I.

Corollary. If f is a flow of a transport network,I is an s–t cut and|f | = c(I), thenf is a
maximum flow andI is a minimum cut.

Proof. If f ∗ is a maximum flow andI∗ is a minimum cut, then|f ∗| ≤ c(I∗) by the corollary
above. Thus,

|f | ≤ |f ∗| ≤ c(I∗) ≤ c(I)

andf is indeed a maximum flow andI is indeed a minimum cut.

Actually, the value of the maximum flow is the capacity of the minimum cut. The show this, we
examine a path from vertexs to vertexv (not necessarily a directed path):

s = v0, e1, v1, e2, . . . , ek, vk = v (pathp).

If ei = (vi−1, vi), then the arcei is aforward arc. If ei = (vi, vi−1), then the arcei is aback arc.
The arcei of p is now weighted by the following formula:

ǫ(ei) =

{

c(ei)− f(ei) if ei is a forward arc

f(ei) if ei is a back arc

CHAPTER 5. GRAPH ALGORITHMS 82

and the pathp is weighted by the following formula:

ǫ(p) =
k

min
i=1
{ǫ(ei)}.

The pathp is unsaturatedif ǫ(p) > 0, i.e. all of the forward arcs ofp are unsaturated and
f(ei) > 0 for all the back arcsei of p.

In particular, ans–t path can be unsaturated in which case it is called anaugmenting path3.
All of these definitions are of course attached to a certain flow f . By starting from ans–t path
p (and a flowf), we can define a new flow:

f =











f(e) + ǫ(p) if e is a forward arc ofp

f(e)− ǫ(p) if e is a back arc ofp

f(e) otherwise.

f is really a flow. Changes inf can only occur at the arcs and vertices ofp. Every arc of
p satisfies the capacity constraint because of howǫ(p) andf(e) are defined. A vertexvi of p
satisfies the conservation condition which we can verify. Wehave four cases:

ei
ei+1

vi

ei

ei+1
vi

ei
ei+1

vi

ei
ei+1

vi

Obviously (think about the sources)

|f | = |f |+ ǫ(p),

sof is not a maximum flow if it has an augmenting path. Moreover, the converse is true as well.
Hence,

Theorem 5.6.A flow is a maximum flow if and only if it does not have any augmenting path.

Proof. As we claimed, a maximum flow can not have an augmenting path. Let us assume that
a flow f does not have an augmenting path. We denote the set of vertices which we can reach
from the sources along unsaturated paths byV1. Then, trivially,s ∈ V1 andt /∈ V1 (because
there are no augmenting paths). Thus, the cutI = 〈V1, V2〉 is ans–t cut. We proceed to prove
that|f | = c(I). By the previous corollary,f is then a maximum flow.

Let us consider the arc(u, v), whereu ∈ V1 andv ∈ V2. Then, there exists an unsaturated
s–u pathp. The edge(u, v) is saturated because there would be an unsaturateds–v path oth-
erwise. Similarly, we conclude thatf(u, v) = 0 for every arc(u, v), whereu ∈ V2 and
v ∈ V1. Therefore, the fluxf+(I) is c(I) and the counter-fluxf−(I) is zero. By Theorem
5.5,|f | = c(I).

3Not to be confused with the augmenting path in the previous section!

CHAPTER 5. GRAPH ALGORITHMS 83

We have also proven the celebrated

Theorem 5.7. (Max-Flow Min-Cut Theorem) The value of a maximum flow in a transport
network is the same as the capacity of a minimum cut.

If the capacities of the arcs are rational numbers, then a maximum flow can be found by
using Theorem 5.6. The algorithm tries to find an augmenting path forf . If it can not be found,
then we have a maximum flow. If we find an augmenting path, then we use it to create a greater
flow f . In the algorithm, we use a labelα for the vertices in the following way:

α(v) = (u, direction,∆),

whereu is a vertex in the transport network (or− if it is not defined), ”direction” is either
forward (→) or back (←) (or − if it is not defined) and∆ is a nonnegative real number (or
∞). The point is, whenever a vertexv is labeled, there is ans–v pathp which contains the
(”directed”) arc(u, v) and∆ = ǫ(p). A direction is forward if an arc is in the direction of the
path and back otherwise. We can label a vertexv when the vertexu has been labeled and either
(u, v) or (v, u) is an arc. We have two cases:

(1) (Forward Label) If e = (u, v) is an arc andα(u) = (·, ·,∆u) as well asc(e) > f(e), then
we can writeα(v) = (u,→,∆v), where

∆v = min{∆u, c(e)− f(e)}.

(2) (Back Label) If e = (v, u) is an arc andα(u) = (·, ·,∆u) as well asf(e) > 0, then we
can writeα(v) = (u,←,∆v), where

∆v = min{∆u, f(e)}.

There are two phases in the algorithm. In the first phase, we label the vertices as presented
above and each vertex is labeled at most once. The phase ends when the sinkt gets labeled as
α(t) = (·,→,∆t), or when we can not label any more vertices. In the second case, there are no
augmenting paths and the flow we obtain is a maximum flow so we stop. In the first case, the
flow we obtain is not a maximum flow and we have an augmenting path p for which ǫ(p) = ∆t.
The algorithm moves on to the second phase. In the second phase, we construct a new greater
flow f by using the labels of the vertices ofp obtained previously. After this, we go back to the
first phase with this greater new flow.

The Ford–Fulkerson Algorithm:

1. Choose an initial flowf0. If we do not have a specific flow in mind, we may usef0(e) = 0.
Label the sources by α(s)← (−,−,∞). Setf ← f0.

2. If we have a unlabeled vertexv, which can be labeled either forward by(w,→, ∆v) or
backward by(w,←,∆v), then we choose one such vertex and label it. (There can be
many ways of doing this and all of them are permitted.) If sucha vertexv does not exist,
output the maximum flowf and stop.

3. If t has not been labeled, go to step #2. Otherwise, setu← t.

CHAPTER 5. GRAPH ALGORITHMS 84

4. If α(u) = (w,→,∆u), then set

f(w, u)← f(w, u) + ∆t and u← w.

If α(u) = (w,←,∆u), then set

f(u, w)← f(u, w)−∆t and u← w.

5. If u = s, then remove all the labelsα but not the label of the source and go to step #2. If
u 6= s, then go to step #4.

If f0(e) andc(e) are rational numbers, then the algorithm stops and producesa maximum flow.4

In this case, we can assume that these weights and capacitiesare nonnegative integers. Thus,
the value of a flow increases by a positive integer every time we move from the second phase to
the first phase and the value reaches a maximum eventually. Onthe other hand, the number of
steps can be as large as the value of the maximum flow. The performance time of the algorithm
does not only depend on the number of vertices but also the capacities.

The algorithm can be modified5 so that it does not depend on the capacities. Thus, it will
work for irrational capacities. In this case, our purpose during the labeling phase is to find the
shortest augmenting path. We get this by always choosing thevertexv in step #2 in such a way
that inα(v) = (w, ·,∆v), w received its label as early as possible.

The Ford–Fulkerson Algorithm also works for finding a maximum matching in a bipartite
graph. Let us do an example:

Example. Using the bipartite graphG from an example in the previous section, we get a trans-
port networkG′:

v1
v2

v3

v4

v5

w1

w2

w3

w4

w6

w5

G: G′: s t

Every edge ofG′ is directed from left to right and given a capacity of1. The initial flow is a
zero flow (or a greater flow we obtain from some other initial flow). During the whole process,
the flows of the edges are integers0 or 1. We take into the matching those edges inG whose
corresponding edgese in G′ receive a flowf(e) = 1 and a maximum flow gives a maximum
matching. Note that an augmenting path can be of length larger than three in this case. (We
can also claim now that the augmenting paths here and the augmenting paths obtained from the
Hungarian Algorithm do have something in common after all!)

4If there are irrational capacities or flowsf0(e), then the algorithm may not stop at all and it may not produce a
maximum flow even if the process repeats endlessly. Of course, we do not have to use irrational flows. In practice,
we will not use irrational capacities.

5This is known as theEdmonds–Karp Modification(refer e.g. to SWAMY & T HULASIRAMAN).

Chapter 6

Drawing Graphs

6.1 Planarity and Planar Embedding

We have not treated graphs as geometric objects so far in the course. In practice, wedraw
graphs, i.e. we treat vertices as geometric points and edgesas continuous curves. If a graph
G can be drawn on a plane (or a sphere) so that the edges only intersect at vertices, then it is
planar. Such a drawing of a planar graph is aplanar embeddingof the graph.

A connected part of a plane which does not contain any vertices and is surrounded by edges
is called aregionof a planar embedding. In addition, the part outside the embedding is consid-
ered as a region, known as theexterior region(when we draw a planar graph on a plane or on a
sphere, it is just like any other region). The vertices surrounding a regions are calledboundary
verticesand the edges surroundings are calledboundary edges. Two regions areadjacentif
they share a boundary edge. Note that a region can be adjacentto itself.

Example. In the following planar embedding

v2
v3

v1

v4

v5

e1 e2

e3

e4 e5

v6

e10

e8

s1

s2

s4

s3

s5

e9

v7

v8

e6 e7

the regions ares1, s2, s3, s4 ands5 (the exterior region) and their boundary vertices and edges
as well as their adjacent regions are given in the table below:

region boundary vertices boundary edges adjacent regions
s1 v1, v5, v2 e1, e10, e2 s2, s5
s2 v2, v5, v4, v3, v6, v7 e2, e4, e7, e9, e8, e6 s1, s2, s3, s5
s3 v4, v5 e4, e5 s2, s5
s4 v5 e3 s5
s5 v1, v5, v4, v3, v2, v8 e10, e3, e5, e7, e6, e1 s1, s2, s3, s4

85

CHAPTER 6. DRAWING GRAPHS 86

In the following, we investigate some fundamental properties of planar embeddings of
graphs.

Theorem 6.1. (Euler’s Polyhedron Formula1) If a planar embedding of a connected graphG
hasn vertices,m edges andf regions, then

f + n = m+ 2.

Proof. Let us use induction onm.
Induction Basis: m = 0. Planar embedding ofG has only one vertex and one region (the

exterior region) so the claim is true.
Induction Hypothesis: The theorem is true form ≤ ℓ. (ℓ ≥ 0)
Induction Statement: The theorem is true form = ℓ+ 1.
Induction Statement Proof: We choose an edgee of G and examine the graphG′ = G− e.

If e is in a circuit, thenG′ is connected and by the Induction Hypothesis, we get

f ′ + n = (m− 1) + 2,

wheref ′ is the number of regions inG′. However, closing the circuit withe increases the
number of regions by one sof ′ = f − 1 and the theorem is true. IfG − e is disconnected,
then it has two planar components,G1 andG2 whose number of vertices, edges and regions are
n1, n2, m1, m2, f1 andf2, respectively. By the Induction Hypothesis,

f1 + n1 = m1 + 2 and f2 + n2 = m2 + 2.

While addinge, the number of regions becomesf1+ f2− 1 (G1 andG2 share the same exterior
region or one exterior region is drawn to be a region of the other component), the number of
vertices becomesn1 + n2 and the number of edges becomesm1 +m2 + 1. Hence, the claim is
true.

Example. (Continuing from the previous example) We remove the vertexv8 to get a connected
planar embedding. Now, we have7 vertices,10 edges,5 regions and5 + 7 = 10 + 2.

Theorem 6.2. (The Linear Bound)If a simple connected planar graphG hasn ≥ 3 vertices
andm edges, then

m ≤ 3n− 6.

Proof. If the regions of a planar embedding ofG ares1, . . . , sf , then we denote the number of
boundary edges ofsi by ri (i = 1, . . . , f). The casef = 1 is obvious becauseG is then a tree
andm = n− 1 ≤ 3n− 6. Thus, we assume thatf ≥ 2. SinceG is simple, every region has at
least3 boundary edges and thus

f
∑

i=1

ri ≥ 3f.

Every edge is a boundary edge of one or two regions in the planar embedding, so

f
∑

i=1

ri ≤ 2m.

The result now follows directly from Euler’s Polyhedron Formula.

1The name comes from a polyhedron withn vertices,m edges,f faces and no holes.

CHAPTER 6. DRAWING GRAPHS 87

Theorem 6.3. (The Minimum Degree Bound)For a simple planar graphG, δ(G) ≤ 5.

Proof. Let us prove by contradiction and consider the counter hypothesis: G is a simple planar
graph andδ(G) ≥ 6. Then, (by Theorem 1.1)m ≥ 3n, wheren is the number of vertices and
m is the number of edges inG. (

√

Theorem 6.2)

A characterization of planar graphs is obtained by examining certain forbidden subgraphs.

Theorem 6.4. (Kuratowski’s Theorem)A graph is planar if and only if none of its subgraphs
can be transformed toK5 or K3,3 by contracting edges.

The proof is quite complicated (but elegant!), refer e.g. toSWAMY & T HULASIRAMAN for
more information.K5 andK3,3 are not planar, which can be verified easily.

There are many fast but complicated algorithms for testing planarity and drawing planar
embeddings. For example, theHopcroft–Tarjan Algorithm2 is one. We present a slower classi-
cal polynomial time algorithm, theDemoucron–Malgrange–Pertuiset Algorithm3 (usually just
calledDemoucron’s Algorithm). The idea of the algorithm is to try to draw a graph on a plane
piece by piece. If this fails, then the graph is not planar.

If G is a graph andR is a planar embedding of a planar subgraphS of G, then anR-piece
P of G is

• either an edge ofG− S whose end vertices are inS, or

• a component of the subgraph induced by vertices not inS which contains the edges (if
any) that connectS to the component, known aspending edges, and their end vertices.

Those vertices of anR-piece ofG that are end vertices of pending edges connecting them to
S are calledcontact vertices. We say that a planar embeddingR of the planar subgraphS is
planar extendabletoG if R can be extended to a planar embedding of the wholeG by drawing
more vertices and/or edges. Such an extended embedding is called aplanar extensionof R to
G. We say further that anR-pieceP of G is drawablein a regions of R if there is a planar
extension ofR to G whereP is insides. Obviously all contact vertices ofP must then be
boundary vertices ofs, but this is of course not sufficient to guarantee planar extendability ofR
toG. Therefore we say that aP is potentially drawablein s if its contact vertices are boundary
vertices ofs. In particular, a piece with no contact vertices is potentially drawable in any region
of R.

Demoucron’s Algorithm:

1. We first check whether or notG is a forest. If it is a forest, then it clearly is planar and
can be planar embedded. (There are fast algorithms for this purpose.) We can then stop.

2. If G is not a forest then it must contain at least one circuit. We choose a circuitC, embed
it to get the planar embeddingD, and setR ← D. (A circuit is obviously planar and is
easily planar embedded.)

3. If R is a planar embedding ofG, then we output it and stop.

2The original reference is HOPCROFT, J.E. & TARJAN, R.E.: Efficient Planarity Testing.Journal of the ACM
21 (1974), 549–568.

3The original reference is DEMOUCRON, G. & MALGRANGE, Y. & PERTUISET, R.: Graphes planaires: recon-
naissance et construction des représentations planaires topologiques.Revue Française Recherche Opérationnelle
8 (1964), 33–47.

CHAPTER 6. DRAWING GRAPHS 88

4. We construct the setP of all R-pieces ofG. For each pieceP ∈ P we denote byS(P)
the set of all those regions ofR whichP is potentially drawable in.

5. If, for anR-pieceP ∈ P, the setS(P) is empty thenG is not planar. We can then output
this information and stop.

6. Choose anR-pieceP , starting from those potentially drawable only in one region.

7. Depending on the number of contact vertices ofP , we planar extendR:

7.1 If P has no contact vertices, we call Demoucron’s Algorithm recursively with input
P . If it turns out thatP is not planar, thenG is not planar, and we output this
information and stop. Otherwise we extendR to a planar embeddingU by drawing
P in one of its regions, setR← U , and return to step #3.

7.2 If P has exactly one contact vertexv, with the corresponding pendant edgee, we
call Demoucron’s Algorithm recursively with inputP . If it turns out thatP is not
planar, thenG is not planar, and we output this information and stop. Otherwise we
extendR to a planar embeddingU by drawingP in a region with boundary vertexv,
setR ← U , and return to step #3. (This region ofR will then be an exterior region
of the planar embedding ofP .)

7.3 If P has (at least) two contact verticesv1 andv2, they are connected by a pathp in
P . We then extendR to a planar embeddingU by drawingp in a region ofR with
boundary verticesv1 andv2 whereP is potentially drawable, setR← U , and return
to step #3.

Clearly, if G is not planar, Demoucron’s Algorithm will output this information. On the
other hand, the algorithm will not get stuck without drawingthe planar embedding if the input
is planar, because

Statement. If G is planar, then at each step of the algorithmR is planar extendable toG.

Proof. We use induction on the number of timesℓ the algorithm visits step #7.
Induction Basis: ℓ = 0. Now eitherG is a forest (andR is not needed) orR is a circuit of

G. Obviously the planar embedding of this circuit can be planar extended toG.
Induction Hypothesis: The statement is true forℓ ≤ r. (r ≥ 0)
Induction Statement: The statement is true forℓ = r + 1.
Incuction Statement Proof: For step #7.1 the matter is clear. If, in step #7.2,P is potentially

drawable in the regions of R, it can always be drawn in this region without endangering subse-
quent steps. In other words, any possible region can be chosen. This is because the region can
be exchanged for another at all times by ”reflection” with respect to the vertexv (and possibly
rescaling):

v
e P

s1

s2

s3
v
e

P s1

s2

s3

CHAPTER 6. DRAWING GRAPHS 89

Similarly, if in step #7.3,P is drawable in a region ofR, then it can be drawn in this region
without endangering subsequent steps. IfP is drawable in both regions1 and regions2, its
contact vertices are boundary vertices of boths1 ands2. At any time, a drawnP (or part of
it) can be moved from regions1 to s2, or vice versa, simply by reflection with respect to the
common boundary (and possibly rescaling to fit into the region).

Remark. Nonplanar graphs may be embedded on closed continuous surfaces with holes. For
instance, a torus is closed surface with exactly one hole. Ona torus we can embed the non-
planar graphsK5, K6 andK7, and alsoK3,3. K8 is more complex and its embedding requires
a closed surface with two holes. The smallest number of holesin a closed surface required for
embedding the graphG on it is called thegenusofG. On the other hand the smallest number of
crossings of edges in a drawing ofG on plane is called thecrossing numberofG. Computation
of genus and crossing number are bothNP-complete problems.

A coloringof a graph is a labeling of vertices where adjacent vertices never share a label.
The labels are then often calledcolors. We say that a graph isk-colorableif it can be colored
using (at most)k colors. If a graph is colorable then it obviously can not haveloops. Equally
obviously, parallel edges can be reduced to one, so we may assume our graphs here to be simple.
The smallest numberk for which the graphG is k-colorable, is called thechromatic numberof
G, denoted byχ(G).

K4 is an example of a planar simple graph which is not3-colorable. On the other hand there
is the celebrated

Theorem 6.5. (The Four-Color Theorem)Every simple planar graph is4-colorable.

Proof. The only known proofs require extensive computer runs. The first such proof was ob-
tained by Kenneth Appel ja Wolfgang Haken in 1976. It takes a whole book to present the
proof: APPEL, K. & H AKEN , W.: Every Planar Map is Four Colorable.American Mathemat-
ical Society (1989).

If we require a bit less, i.e.5-colorability, then there is much more easily provable result,
and an algorithm.

Theorem 6.6. (Heawood’s Theorem or The Five-Color Theorem)Every simple planar graph
is 5-colorable.

Proof. We may think ofG as a planar embedding. We use induction on the numbern of vertices
of G.

Induction Basis: n = 1. Our graph is now1-colorable since there are no edges.
Induction Hypothesis: The theorem is true forn ≤ ℓ. (ℓ ≥ 1)
Induction Statement: The theorem is true forn = ℓ+ 1.
Induction Statement Proof: According to the Minimum Degree Bound, there is a vertexv

in G of degree at most5. On the other hand, according to the Induction Hypothesis the graph
G − v is 5-colorable. If, in this coloring, the vertices adjacent tov are colored using at most
four colors, then clearly we can5-colorG.

So we are left with the case where the verticesv1, v2, v3, v4, v5 adjacent tov are colored
using different colors. We may assume that the indexing of the vertices proceeds clockwise,
and we label the colors with the numbers1, 2, 3, 4, 5 (in this order). We show that the coloring
of G− v can be changed so that (at most) four colors suffice for coloringv1, v2, v3, v4, v5.

We denote byHi,j the subgraph ofG− v induced by the vertices colored withi andj. We
have two cases:

CHAPTER 6. DRAWING GRAPHS 90

• v1 andv3 are in different componentsH1 andH3 of H1,3. We then interchange the colors1
and3 in the vertices ofH3 leaving the other colors untouched. In the resulting5-coloring
of G− v the verticesv1 andv3 both have the color1. We can then give the color3 to v.

• v1 andv3 are connected inH1,3. Then there is av1–v3 path inH1,3. Including the vertex
v we get from this path a circuitC. Now, since we indexed the verticesv1, v2, v3, v4, v5
clockwise, exactly one of the verticesv2 andv4 is insideC. We deduce thatv2 andv4 are
in different components ofH2,4, and we have a case similar to the previous one.

The proof gives a simple (recursive) algorithm for5-coloring a planar graph, the so-called
Heawood’s Algorithm.

6.2 The Davidson–Harel Algorithm

For the actual drawing of a graph we need to define the drawing area (the ”window”), i.e. a
rectangular area with sides parallel to the coordinate axes, the drawing curve of the edges (here
edges are drawn as line segments), and certain ”criteria of beauty”, so that the resulting drawing
is pleasant to the eye, balanced, and as clear as possible. Such ”beauty criteria” are of course
context-dependent and even matters of individual taste. Inthe sequel we restrict ourselves to
simple graphs, given by, say, an adjacency matrix or an all-vertex incidence matrix.

We will now present the so-calledDavidson–Harel Algorithm4 which, applying an anneal-
ing algorithm, aims at better and better drawings of a graph using a certainugliness function
(cf. Section 5.7). An ugliness functionR computes a numericalugliness valueobtained from
a drawingP of a graphG. This value is a sum of various contributing factors. We denote, as
usual, the sets of vertices and edges ofG by {v1, . . . , vn} and{e1, . . . , em}, respectively. We
also denote byvi the vector (or geometric point) corresponding to the vertexvi, and byej the
line segment corresponding to the edgeej. Further, we denote

dij = ‖vi − vj‖,

ri = distance ofvi from the right border of the window,

li = distance ofvi from the left border of the window,

ui = distance ofvi from the upper border of the window,

bi = distance ofvi from the lower border of the window,

cj = length of the line segmentej,

fij =

{

1, if the line segmentsei andej intersect withoutei andej being adjacent

0 otherwise,

gij =

{

distance ofvi from the line segmentej if it exceedsγ andvi is not an end vertex ofej
γ otherwise.

γ is a parameter of the algorithm telling how close to verticesedges can be. The ugliness
function is then given by

4The original reference is DAVIDSON, R. & HAREL, D.: Drawing Graphs Nicely Using Simulated Annealing.
ACM Transactions on Graphics15 (1996), 301–331.

CHAPTER 6. DRAWING GRAPHS 91

R(P) = λ1

n−1
∑

i=1

n
∑

j=i+1

1

d2ij
+ λ2

n
∑

i=1

(

1

r2i
+

1

l2i
+

1

u2
i

+
1

b2i

)

+ λ3

m
∑

j=1

c2j

+ λ4

m−1
∑

i=1

m
∑

j=i+1

fij + λ5

n
∑

i=1

m
∑

j=1

1

g2ij
,

whereλ1, . . . , λ5 are nonnegative-valued parameters weighting the contributions of the various
factors. (One could actually use negative values as well, whatever the interpretation then might
be.)

We can computedij, . . . , gij quite easily using some basic formulae of vector geometry. We
must, however, think about the speed of the computation as well. One way to speed up the
computation is to use complex arithmetic.dij, . . . , gij are then equally easily computable.5 It
may also be of advantage to force the vertices into a lattice of geometric points. This can be
achieved for instance by rounding the coordinates (or complex numbers) to a fixed accuracy
and abandoning drawings where the ugliness function has thevalue∞ (this happens e.g. when
vertices occupy the same point).

In the annealing process the state isP and the response isR(P). An initial state can be
obtained by choosing the pointsv1, . . . ,vn in the window randomly, and then drawing the
edges accordingly. The state transition processP ← Aρ(P) is the following:

• Choose a random vertexvi. (Alternatively the vertices may be circulated cyclically.)

• Draw a circle of radiusρ centered onvi. The radiusρ is a parameter, which is initially
large and gradually reduced later in some systematic fashion.

• Chose a random pointu on this circle.

• If u is outside the drawing window, the state remains the same. Otherwise setvi ← u
and change the edges accordingly in the drawing.

The remaing parts of the algorithm are very similar to the annealing algorithm for the TSP in
Section 5.7.

Remark. This method has numerous variants. The window could be a circle and the edges
concentric arcs or radii. Or the window could be a sphere and edges drawn as arcs of great
circles. The window could also be unbounded, for instance, the whole ofR2. We could ”draw”
graphs three-dimensionally. Etc. We could also use a metricother than the Euclidean one when
computing distances, e.g. the Manhattan metric (”1-norm”) or the max-metric (”∞-norm”),
geodetic distances on a sphere, etc. Needless to say, the resulting drawings are rather different
using these variants of the algorithm.

It may be noted that using nearly any effective criteria, finding the optimally pleasing draw-
ing of a simple graph is anNP-hard problem.

5Note that ifz1 = x1 + jy1 andz2 = x2 + jy2, wherej is the imaginary unit, then the real part ofz1z2 equals

the dot product(x1, y1) • (x2, y2) and the imaginary part equals the determinant

∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

.

Chapter 7

MATROIDS

Many concepts in the preceding chapters do not so much deal with graphs themselves as their
structural properties. Examples are various dualities (cut set vs. circuit), principles behind cer-
tain algorithms (e.g. Kruskal’s Algorithms), and various extremality properties (many structures
are the ”smallest of their kind”, one cannot e.g. remove an edge of a cut set without it losing
this property).

Exactly corresponding structures were found in many other areas of mathematics, and they
were called matroids.1

7.1 Hereditary Systems

A hereditary family of setsis a family of sets such that whenever a setF is in the family then
so are all subsets ofF (and in particular the empty set∅). A hereditary systemM of a setE
is a nonempty hereditary familyIM of subsets ofE. Included there are also the various ways
of specifyingIM , calledaspects.It will be assumed in what follows thatE is a finite set. The
following nomenclature is traditional:

• Sets in the familyIM are calledindependent setsof M .

• The family of subsets ofE other than those inIM is denoted byDM and called the family
of dependent setsof M .

• An independent set ismaximalif it is not a proper subset of another independent set. A
maximal independent set is called abasis.The family of all bases is denoted byBM . Note
that an independent set is always contained in a basis.

• A dependent set isminimalif no dependent set is its proper subset. A minimal dependent
set is called acircuit.2 (Recall that the empty set is always inIM .) The family of all
circuits is denoted byCM . Note that a dependent set always contains a circuit.

• A circuit consisting of only one element is a so-calledloop. Elements of a circuit with
two elements are calledparallel. A hereditary system issimpleif it has no loops and no
parallel elements.

1The remarkable thing is that many of these structures were found independently at the same time around the
year 1935: Hassler Whitney investigated planarity of graphs, Saunders MacLane geometric lattices of points, and
Bartel van der Waerden’s topic was independence in vector spaces.

2This or any other ”familiar sounding” concept should not be confused with the corresponding concept for
graphs, even though there is a certain connection, as will beseen!

92

CHAPTER 7. MATROIDS 93

• The rank of a subsetF of E is the largest size of an independent set contained inF .
(Recall thatE is assumed to be finite.) Note that the empty set is always an independent
set contained inF . The rank ofF is denoted byρM (F), andρM is called therank function
of M .

A notation similar to one used for graphs will be adopted in the sequel concerning adding
an elemente to the setF (denoted byF + e) or removing it fromF (denoted byF − e). Two
easy properties of the rank function are the following

Theorem 7.1. If M is a hereditary system of the setE then

(i) ρM(∅) = 0, and

(ii) for any subsetF of E and any elemente,

ρM (F) ≤ ρM(F + e) ≤ ρM(F) + 1.

Proof. Item (i) is clear, so let us move to item (ii).
SinceF + e contains those independent sets that are contained inF , we haveρM (F + e) ≥

ρM(F). On the other hand, possible independent subsets ofF + e not contained inF may only
consist of an independent subset ofF ande, soρM(F + e) ≤ ρM (F) + 1.

A hereditary systemM may of course be specified by giving its independent sets, that is by
giving IM . It can be specified as well by giving its bases, i.e.BM , independent sets will then
be exactly all subsets of bases. On the other hand,M can be specified by giving its circuits,
i.e. CM , independent sets are then the sets not containg circuits. Finally, M can be defined by
giving the rank functionρM , since a setF is independent exactly whenρM(F) = #(F). (As
before, we denote cardinality of a setF by#(F).) Thus an aspect may involve any ofIM , BM ,
CM andρM .

It might be mentioned that a hereditary system is a far too general concept to be of much
use. This means that well chosen aspects are needed to restrict the concept to a more useful one
(that is, a matroid). Let us have a look at certain proper aspects in connection with a matroid
well familiar from the preceding chapters.

7.2 The Circuit Matroid of a Graph

The circuit matroidM(G) of a graphG = (V,E) is a hereditary system of the edge setE
whose circuits are the circuits ofG, considered as edge sets. (It is naturally assumed thatG is
not empty.) The bases ofM(G) are the maximal independent edge sets, i.e. spanning forests
of G, and the independent sets ofM(G) are the subforests, both considered as edge sets. Let
us denoteGF = (V, F) for a subsetF of E. The number of vertices ofG is denoted byn, as
usual.

Remark. A hereditary system that is not directly a circuit matroid ofany graph but has a
structure identical to one is called agraphic matroid.

Let us then take a look at different aspects of the circuit matroid.

CHAPTER 7. MATROIDS 94

Basis Exchange Property

Let us consider two bases (i.e. spanning forests)B1 andB2. If e is an edge inB1, its removal
divides some componentG′ of the graphG into two disjoint subgraphs. Now certain edges of
B1 will be the branches of a spanning treeT1 of G′, and similarly, certain edges inB2 will be
the branches of a spanning treeT2 of G′. The removed edgee is either a branch ofT2 or then a
link of T ∗

2 . In the latter casee will be in the fundamental cut set determined by a branchf of T2

(cf. Theorem 2.7). ThenT1 − e+ f is also a spanning tree ofG′ and we can replacee by f and
get again a spanning forest ofG, that is, a basis.

Hence we have

Basis Exchange Property:If B1 andB2 are different bases ande ∈ B1 − B2 then there is an
elementf ∈ B2 − B1 such thatB1 − e + f is a basis.

In general, a hereditary system with the basis exchange property will be a matroid. In other
words, the basis exchange property is a proper aspect. Usingbasis exchange one can move
from one basis to another. All bases are thus of the same size.

Uniformity. Absorptivity

For a subsetF of E let us denote bynF the number of vertices in the subgraph〈F 〉 of G
induced byF , and bykF the number of its components. Then there arenF − kF edges in a
spanning forest of〈F 〉. Let us denote further byKF the number of components of the subgraph
GF of G. Clearly then

ρM(G)(F) = nF − kF = n−KF ,

and all such spanning forests are of the same size. Hence

Uniformity: For a subsetF of E all maximal independent subsets ofF are of the same size.
(Maximality of a setH means here that there are no independent setsJ such thatH ⊂ J ⊆ F .)

In general, a hereditary system with the uniformity property will be a matroid, and uniformity
is a proper aspect.

In the figure below continuous lines are the edges ofF , with the thick ones being the
branches of a spanning forest. Dashed lines indicate the remaining edges inE.

e

f

If e is an edge ofG andρM(G)(F + e) = ρM(G)(F) thene does not connect two components
of GF . Supposef is another edge with the same property, that is,ρM(G)(F + f) = ρM(G)(F).
Clearly then

ρM(G)(F + e+ f) = ρM(G)(F).

Thus we get

Weak Absorptivity: If e, f ∈ E andF ⊆ E and

ρM(F) = ρM(F + e) = ρM(F + f)

CHAPTER 7. MATROIDS 95

then also
ρM(F + e+ f) = ρM(F).

In general a weakly absorptive hereditary system is a matroid, and thus weak absorptivity is
another proper aspect.

By repeating the above argument sufficiently many times we see that ifF andF ′ are sets of
edges ofG, and for each edgee in F ′ we haveρM(G)(F + e) = ρM(G)(F), then

ρM(G)(F ∪ F ′) = ρM(G)(F).

Hence also

Strong Absorptivity: If F, F ′ ⊆ E andρM (F + e) = ρM(F) for each elemente in F ′ then

ρM (F ∪ F ′) = ρM(F).

We conclude that strong absorptivity is a proper aspect.

Augmentation

SupposeI1 andI2 are independent sets of the circuit matroidM(G) (edge sets of subforests
of G) and#(I1) < #(I2). The subgraphGI1 then hasn−#(I1) components, and the subgraph
GI2 hasn − #(I2) components, so strictly less thanGI1 . Adding an edge does not reduce the
number of components exactly in the case where the edge is added in some component. Thus,
if adding any edge inI2 − I1 to GI1 preserves the number of components then it must be that
the edge is added in some component ofGI1, andGI2 cannot have fewer components thanGI1 .
But as noted, this is not the case if#(I1) < #(I2), and so

Augmentation: If I1 and I2 are independent sets of the hereditary systemM and#(I1) <
#(I2) then there exists an elemente ∈ I2 − I1 such thatI1 + e is in IM .

In general, a hereditary system with the augmentation property is a matroid. Thus augmentation
is a proper aspect, too.

Elimination

The circuits of the circuit matroidM(G) are the edge sets of the circuits ofG. The degree
of a vertex in a circuit is two. IfC1 andC2 are different circuits ofM(G) then the degree of
a vertex of the ring sum〈C1〉 ⊕ 〈C2〉 is also even, see Section 1.3. Hence〈C1〉 ⊕ 〈C2〉 must
contain at least one circuit as a subgraph, since a ring sum does not have isolated vertices and
a nonempty forest has at least one pending vertex (Theorem 2.3). Recalling the definition of
ring sum in Section 1.3 it is noticed that such a circuit does not contain edges in the intersection
C1 ∩ C2, at least not with as high multiplicity as inC1 ∪ C2. Thus

Elimination Property: If C1 and C2 are different circuits of the hereditary systemM and
e ∈ C1 ∩ C2 then there is a circuitC ∈ CM such thatC ⊆ C1 ∪ C2 − e.

Again, elimination property is a proper aspect, and a hereditary system with the elimination
property is a matroid.

CHAPTER 7. MATROIDS 96

Induced Circuits

If I is an independent set of the circuit matroidM(G) (edge set of a subforest) then adding
one edge either closes exactly one circuit in a component ofGI (Theorem 2.3), or then it con-
nects two components ofGI and does not create a circuit. We have then

Property of Induced Circuits: If I is an independent set of a hereditary systemM ande ∈ E
thenI + e contains at most one circuit.

The property of induced circuits is a proper aspect, and a hereditary system having this property
will be a matroid.

7.3 Other Basic Matroids

Vectorial Matroid

Let E be a finite set of vectors of a vector space (sayR
n) and the independent sets of a

hereditary systemM of E be exactly all linearly independent subsets ofE (including the empty
set).M is then a so-calledvectorial matroid.HereE is usually allowed to be a multiset, i.e. its
elements have multiplicities—cf. parallel edges of graphs. It is then agreed, too, that a subset of
E is linearly dependent when one its elements has a multiplicity higher than one. A hereditary
system that is not directly vectorial but is structurally identical to a vectorial matroidM ′ is
called alinear matroid, and the matroidM ′ is called itsrepresentation.

A circuit of a vectorial matroid is a linearly dependent setC of vectors such that remov-
ing any of its elements leaves a linearly independent set—keeping in mind possible multi-
ple elements. An aspect typical to vectorial matroids is theelimination property. IfC1 =
{r, r1, . . . , rk} andC2 = {r, r

′

1, . . . , r
′

l} are different circuits sharing (at least) the vectorr then
r can be represented as linear combinations of other vectors in bothC1 andC2, and in such a
way that all coefficients in the combinations are nonzero. Weget thus an equality

k
∑

i=1

ciri −
l

∑

j=1

c′jr
′

j = 0.

Combining (possible) repetitive vectors on the left hand side, and noticing that this does not
make it empty, we see thatC1∪C2−r contains a circuit. (Note especially the case where either
C1 = {r, r} orC2 = {r, r}.)

In the special case whereE consists of columns (or rows) of a matrixA, a vectorial matroid
of E is called amatrix matroidand denoted byM(A). For example, the circuit matroidM(G)
of a graphG is a linear matroid whose representation is obtained using the rows of the circuit
matrix of G in the binary fieldGF(2) (see Section 4.5).3 Of course, if desired, any vectorial
matroid ofE may be considered as a matrix matroid simply by taking the vectors of E as
columns (or rows) of a matrix.4

3Hereditary systems with a representation in the binary fieldGF(2) are calledbinary matroids.The circuit
matroid of a graph is thus always binary.

4This actually is the origin of the name ”matroid”. A matroid is a generalization of a linear matroid and a linear
matroid may be thought of as a matrix. Indeed, not all matroids are linear. The name ”matroid” was strongly
opposed at one time. Even today there are people who prefer touse names like ”geometry” or ”combinatorial
geometry”.

CHAPTER 7. MATROIDS 97

Transversal Matroid

LetA = {A1, . . . , Ak} be a family of nonempty finite sets. Thetransversal matroidM(A)
is a hereditary system of the setE = A1 ∪ · · · ∪ Ak whose independent sets are exactly all
subsets ofE containing at most one element of each of the setsAi (including the empty set).
Here it is customary to allow the familyA to be a multiset, that is, a setAi may appear several
times as its element, thus allowing more than one element ofAi in an independent set.

A natural aspect of transversal matroids is augmentation, and it is connected with aug-
mentings of matchings of bipartite graphs! (See Section 5.8.) Let us define a bipartite graph
G = (V,E ′) as follows: The vertex set isV = E ∪ A, and the verticese andAj are connected
by an edge exactly whene ∈ Aj . (Note how the vertex setV is naturally divided into the two
parts of the cut,E andA.) An independent set ofM(A) is then a set of matched vertices ofG
in E, and vice versa.

Example. In the figure below is the bipartite graph corresponding to the transversal matroid
of the family{{1, 2}, {2, 3, 4}, {4, 5}}, and its independent set{1, 2, 4} (thick line).

1

2

3
4

5

{1,2}

{2,3,4}

{4,5}

Very much in the same way as in the proof of Theorem 5.3 one may show that ifI1 andI2 are
independent sets (vertex sets of the matchingsS1 andS2) and#(I1) < #(I2) then there is an
augmenting path of the matchingS1 such that the new matched vertex is inI2. ThusM(A)
indeed has the augmentation property.

Remark. For matchings of bipartite graphs the situation is completely general. That is, match-
ings of bipartite graphs can always be thought of as independent sets of transversal matroids.
In fact this remains true for matchings of general graphs, too, leading to the so-calledmatching
matroids,see e.g.SWAMY & T HULASIRAMAN .

If the sets of the familyA are disjoint—i.e. they form a partition ofE—then the transversal
matroid is also calledpartition matroid.For a partition matroid augmentation is obvious.

Uniform Matroid

For all finite setsE one can define the so-calleduniform matroids.The uniform matroid ofE
of rankk, denotedUk(E), is a hereditary system whose independent sets are exactly all subsets
of E containing at mostk elements. The bases ofUk(E) are those subsets containing exactly
k elements, and the circuits are the subsets containing exactly k + 1 elements. In particular, all
subsets ofE form a uniform matroid ofE of rank#(E), this is often called thefree matroidof
E. Quite obviouslyUk(E) has the basis exchange property and the augmentation property.

Uniform matroids are not very interesting as such. They can be used as ”building blocks”
of much more complicated matroids, however. It may also be noted that uniform matroids are
transversal matroids (can you see why?).

CHAPTER 7. MATROIDS 98

7.4 Greedy Algorithm

Many problems of combinatorial optimization5 may be thought of as finding a heaviest or a
lightest independent set of a hereditary systemM of E, when each element ofE is given a
weight. The weighting function isα : E → R and the weight of a setF ⊆ E is

∑

e∈F

α(e).

The two optimization modes are interchanged when the signs of the weights are reversed.
One may also find the heaviest or the lightest bases. Again reversing the signs of the weights

interchanges maximization and minimization. If all bases are of the same size—as will be the
case for matroids—they can be restricted to the case where there weights are positive. Indeed,
if A is the smallest weight of an element ofE then changing the weight function to

β : β(e) = 1 + α(e)−A

one gets an equivalent optimization problem with positive weights. On the other hand, maxi-
mization and minimization are interchanged when the weighting function is changed to

β : β(e) = 1 +B − α(e)

whereB is the largest weight of an element ofE.

Example. (A bit generalized) Kruskal’s Algorithm (see Section 5.6) finds a lightest spanning
forest of an edge-weighted graphG, i.e. a lightest basis of the circuit matroid ofG. As was seen,
this can be done quite fast—and even faster if the edges are given in the order of increasing
weight when one can always consider the ”best” remaining edge to be included in the forest.
Kruskal’s Algorithm No. 1 is an example of a so-called greedyalgorithm that always proceeds
in the ”best” available direction. Such a greedy algorithm is fast, indeed, it only needs to find
this ”best” element to be added in the set already constructed.

It might be mentioned that Kruskal’s Algorithm No. 3 is also agreedy algorithm, it finds a
heaviest cospanning forest in the dual matroid of the circuit matroid, the so-called bond matroid
ofG (see Section 7.6).

Even though greedy algorithms produce the correct result for circuit matroids they do not
always do so.

Example. Finding a lightest Hamiltonian circuit of an edge-weightedgraphG may also be
thought of as finding the lightest basis of a hereditary system—assuming of course that there
are Hamitonian circuits. The setE is again taken to be the edge set ofG but now the bases
are the Hamiltonian circuits ofG (considered as edge sets). A lightest basis is then a light-
est Hamiltonian circuit. As was noticed in Section 5.7, finding a lightest Hamiltonian circuit
is a well-knownNP-complete problem and no greedy algorithm can thus always produce a
(correct) result—at least ifP 6= NP. The hereditary system thus obtained is in general not a
matroid, however (e.g. it does not generally have the basis exchange property).

It would thus appear that—at least for matroids—greedy algorithms are favorable methods
for finding heaviest/lightest bases (or independent sets).Indeed, matroids are precisely those
hereditary systems for which this holds true. To be able to proceed further we define thegreedy
algorithmformally. We consider first maximization of independent sets, minimization is given
in brackets. The input is a hereditary systemM of the setE, and a weighting functionα.

5These problems are dealt with more extensively in the courseOptimization Theory 2.

CHAPTER 7. MATROIDS 99

Greedy Algorithm for Independent Sets:

1. Sort the elementse1, . . . , em of E according to decreasing [increasing] weight:e(1), . . . ,
e(m).

2. SetF ← ∅ andk ← 1.

3. If α(e(k)) ≤ 0 [α(e(k)) ≥ 0], returnF and quit.

4. If α(e(k)) > 0 [α(e(k)) < 0] andF ∪ {e(k)} is independent, setF ← F ∪ {e(k)}.

5. If k = m, returnF and quit. Else setk ← k + 1 and go to #3.

For bases the algorithm is even simpler:

Greedy Algorithm for Bases:

1. Sort the elementse1, . . . , em of E according to decreasing [increasing] weight:e(1), . . . ,
e(m).

2. SetF ← ∅ andk ← 1.

3. If F ∪ {e(k)} is independent, setF ← F ∪ {e(k)}.

4. If k = m, returnF and quit. Else setk ← k + 1 and go to #3.

The main result that links working of greedy algorithms and matroids is

Theorem 7.2. (Matroid Greediness Theorem)The greedy algorithm produces a correct heav-
iest independent set of a hereditary systemfor all weight functionsif and only if the system is
a matroid. (This is the so-calledgreediness property.) The corresponding result holds true for
bases, and also for finding lightest independent sets and bases. Furthermore, in both cases it
suffices to consider positive weights.

Proof. The first sentence of the theorem is proved as part of the proofof Theorem 7.3 in the
next section.

As noted above, greediness is equivalent for maximization and minimization, for both inde-
pendent sets and bases. It was also noted that finding a heaviest basis may be restricted to the
case of positive weights. Since for positive weights a heaviest independent set is automatically
a basis, greediness for bases follows from greediness for independent sets.

On the other hand, if greediness holds for bases, it holds forindependent sets as well. Max-
imization of independent sets using the weight functionα then corresponds to maximization of
bases for the positive weight function

β : β(e) = 1 + max(0, α(e)),

the greedy algorithms behave exactly similarly, item #3 is not activated for independent sets.
Elements of weight1 should be removed from the output.

Remark. Greediness is thus also a proper aspect for matroids. For hereditary families of sets
it is equivalent to usefulness of the greedy algorithm. Certain other similar but more general
families of sets have their own ”greediness theorems”. Examples are the so-calledgreedoids
andmatroid embeddings.

CHAPTER 7. MATROIDS 100

7.5 The General Matroid

Any one of the several aspects above makes a hereditary system a matroid. After proving that
they are all equivalent, we may define amatroidas a hereditary system that has (any) one of
these aspects.

Before that we add one aspect to the list, which is a bit more difficult to prove directly for
circuits matroids of graphs:

Submodularity: If M is a hereditary system of the setE andF, F ′ ⊆ E then

ρM(F ∩ F ′) + ρM (F ∪ F ′) ≤ ρM(F) + ρM(F ′).

Let us then prove the equivalences, including submodularity.

Theorem 7.3. If a hereditary system has (any) one of the nine aspects belowthen it has them
all (and is a matroid).

(i) Uniformity (vi) Submodularity
(ii) Basis exchange property (vii) Elimination property

(iii) Augmentation property (viii) Property of induced circuits
(iv) Weak absorptivity (ix) Greediness
(v) Strong absorptivity

Proof. The implications are proved following the strongly connected digraph below:

(i) (ii) (iii) (iv) (v)

(vi)

(vii) (viii) (ix)

All nine aspects are then connected by implication chains inboth directions, and are thus logi-
cally equivalent. Let us consider a general hereditary systemM of the setE.

(i)⇒(ii): As a consequence of uniformity, all bases ofM are of the same size. IfB1, B2 ∈
BM ande ∈ B1 − B2, we may apply uniformity to the setF = (B1 − e) ∪ B2. All maximal
independent sets included inF are then of the same size asB2 (andB1). Now B1 − e is not
one of these maximal sets having too few elements. On the other hand, by adding one element
f toB1− e we get such an independent setH. The elementf must then be in the set difference
B2 −B1, soH = B1 − e + f . Moreover,H has as many elements asB1, and so it is a basis.

(ii)⇒(iii): If I1, I2 ∈ IM and#(I1) < #(I2), we choose basesB1 andB2 such thatI1 ⊆ B1

andI2 ⊆ B2. Applying basis exchange (repeatedly) we replace those elements ofB1 − I1 that
are not inB2 by elements ofB2. After this operation we may assume thatB1 − I1 ⊆ B2. As a
consequence of the basis exchange property all bases are of the same size. Thus

#(B1 − I1) = #(B1)−#(I1) > #(B2)−#(I2) = #(B2 − I2),

andB1− I1 cannot be included inB2− I2. Therefore there is an elemente of B1− I1 in I2 and
I1 + e is an independent set.

CHAPTER 7. MATROIDS 101

(iii)⇒(iv): Let us consider a situation where

ρM(F) = ρM(F + e) = ρM(F + f).

If now ρM (F + e+ f) > ρM(F), we take a maximal independent subsetI1 of F and a maximal
inpendent subsetI2 of F + e + f . Then#(I2) > #(I1) and by the augmentation propertyI1
can be augmented by an element ofI2. This element cannot be inF (why not?), so it must be
eithere or f . But thenρM(F) < ρM(F + e) or ρM(F) < ρM(F + f) (

√
).

(iv)⇒(v): Let us assume weak absorptivity and consider subsetsF andF ′ of E such that
ρM(F + e) = ρM(F) for each elemente of F ′. We use induction onk = #(F ′ − F) and show
thatρM (F) = ρM (F ∪ F ′) (strong absorptivity).

Induction Basis: Now k = 0 or k = 1 and the matter is clear.
Induction Hypothesis: The claimed result holds true whenk ≤ ℓ. (ℓ ≥ 1)
Induction Statement: The claimed result holds true whenk = ℓ+ 1.
Induction Statement Proof: Choose distinct elementse, f ∈ F ′ − F and denoteF ′′ = F ′ −

e− f . The Induction Hypothesis implies that

ρM(F) = ρM(F ∪ F ′′) = ρM(F ∪ F ′′ + e) = ρM(F ∪ F ′′ + f).

Applying weak absorptivity to this it is seen that

ρM(F) = ρM(F ∪ F ′′ + e+ f) = ρM(F ∪ F ′).

(v)⇒(i): If I is a maximal independent subset ofF thenρM(I+e) = ρM (I) for elementse in
the set differenceF−I (if any). Strong absorptivity implies then thatρM (F) = ρM (I) = #(I),
i.e. all these independent sets are of the same size and uniformity holds true.

(i)⇒(vi): Let us consider setsF, F ′ ⊆ E and denote byI1 a maximal independent subset of
the intersectionF ∩ F ′ and byI2 a maximal inpendent subset of the unionF ∪ F ′. Uniformity
implies augmentation, so we may assume thatI2 is obtained fromI1 by adding elements, that
is I1 ⊆ I2. Now I2 ∩ F is an independent subset ofF andI2 ∩ F ′ is an independent subset of
F ′, and both of them includeI1. So

ρM (F ∩ F ′) + ρM(F ∪ F ′) = #(I1) + #(I2)
∗

= #(I2 ∩ F) + #(I2 ∩ F ′) ≤ ρM(F) + ρM(F ′).

The equality marked by an asterisk is a set-theoretical one,see the figure below.

I1I2 I2F F

(vi)⇒(vii):Let us consider distinct circuitsC1, C2 ∈ CM and an elemente ∈ C1 ∩ C2. Then
ρM(C1) = #(C1)−1 andρM(C2) = #(C2)−1, andρM(C1∩C2) = #(C1∩C2). (Remember
that every proper subset of a circuit is independent.) If nowC1∪C2−e does not contain a circuit,
it is independent andρM(C1∪C2−e) = #(C1∪C2)−1, whenceρM (C1∪C2) ≥ #(C1∪C2)−1.
Submodularity however implies that

ρM(C1 ∩ C2) + ρM (C1 ∪ C2) ≤ ρM(C1) + ρM(C2),

CHAPTER 7. MATROIDS 102

and further that (check!)

#(C1 ∩ C2) + #(C1 ∪ C2) ≤ #(C1) + #(C2)− 1.

This is a set-theoretical impossibility, and thusC1 ∪ C2 − e does contain a circuit.
(vii)⇒(viii): If I is an independent set andI + e contains two distinct circuitsC1 andC2

then obviously bothC1 andC2 contain the elemente. The elimination property implies that
C1 ∪ C2 − e contains a circuit. SinceC1 ∪ C2 − e is however contained inI, it is independent
(
√

). SoI + e contains at most one circuit.
(viii)⇒(ix): Let us denote byI the output of the greedy algorithm for the weighting function

α. (The problem is finding a heaviest independent set.) IfI is a heaviest independent set, then
the matter is clear. Otherwise we take a heaviest independent set having the largest intersection
with I. Let us denote this heaviest independent set byI ′. I cannot be a subset ofI ′, because the
greedy algorithm would then find an even heavier independentset. Let us further denote bye the
first element of the set differenceI− I ′ that the greedy algorithm chooses.I ′+ e is a dependent
set and contains thus exactly one circuitC (remember the property of induced circuits). This
circuit of course is not included inI, so there is an elementf ∈ C − I. SinceI ′ + e contains
only one circuit,I ′ + e − f is an independent set.I ′ is maximal, so thatα(f) ≥ α(e). On the
other hand,f and those elements ofI that the greedy algorithm chose before choosinge are all
in I ′, whence addingf to the elements does not create a circuit. This means thatf was available
for the greedy algorithm when it chosee, and soα(f) ≤ α(e). We conclude thatα(f) = α(e)
and the setsI ′ + e − f andI ′ have equal weight. This however is contrary to the choice ofI ′

because#((I ′ + e− f) ∩ I) > #(I ′ ∩ I). (The reader may notice a similarity to the proof of
Theorem 5.2. Indeed, this gives another proof for Kruskal’sAlgorithm No. 1.)

(ix)⇒(iii): Let us consider independent setsI1 andI2 such that#(I1) < #(I2). For brevity
we denotek = #(I1). Consider then the weighting function

α : α(e) =











k + 2, if e ∈ I1

k + 1, if e ∈ I2 − I1

0 otherwise.

The weight ofI2 is then

∑

e∈I2

α(e) ≥ (k + 1)2 > k(k + 2) =
∑

e∈I1

α(e).

It is thus larger than the weight ofI1, so I1 is not a heaviest independent set. On the other
hand, when finding a heaviest independent set the greedy algorithm will choose all elements of
I1 before it ever chooses an element ofI2 − I1. Since it is now assumed to produce a heaviest
independent set, it must choose at least one elemente of I2−I1 andI1+e is thus an independent
set. This shows that the augmentation property holds true.

The most popular aspect defining a matroid is probably the augmentation property.

7.6 Operations on Matroids

In the preceding chapters, in connection with fundamental cut sets and fundamental circuits,
mutual duality was mentioned. Duality is a property that is very natural for hereditary systems
and matroids.

CHAPTER 7. MATROIDS 103

The dual (system) M∗ of a hereditary systemM of the setE is a hereditary system ofE
whose bases are the complements of the bases ofM (againstE). Often the bases ofM∗ are
calledcobasesof M , circuits ofM∗ are calledcocircuitsof M , and so on. It is easily checked
thatM∗ really is a hereditary system ofE: If B1 andB2 are distinct bases ofM∗ thenB1 and
B2 are distinct bases ofM . Thus, ifB1 ⊆ B2 thenB2 ⊆ B1 (

√
). Note also that(M∗)∗ = M .

Theorem 7.4. (Whitney’s Theorem)The dualM∗ of a matroidM is a matroid, the so-called
dual matroid,and

ρM∗(F) = #(F)− ρM (E) + ρM(F).

(Note thatρM (E) is the size of a basis ofM .)

Proof. Let us show thatM∗ has the basis exchange property, which makes it a matroid accord-
ing to Theorem 7.3. IfB1 andB2 are distinct bases ofM∗ ande ∈ B1 − B2 thenB1 andB2

are distinct bases ofM ande ∈ B2 − B1. SinceB1 is a basis ofM , B1 + e contains exactly
one circuitC of M (the property of induced circuits) and this circuit must have an element
f ∈ B2−B1. Then howeverB1+e−f does not contain a circuit ofM , i.e. it is an independent
set ofM , and has the same size asB1. All bases have the same size, soB1 + e− f is a basis of
M and its complementB1 − e + f is a basis ofM∗.

To compute the rankρM∗(F) we take a maximal independent setH of M∗ included inF .
Then

ρM∗(F) = ρM∗(H) = #(H).

ThenH is a minimal set containing the setF and a basis ofM . (This is simply the same
statement in other words. Note thatH is included in some basis ofM∗.) But such a set is
obtained starting fromF , taking a maximal independent set ofM contained inF—which has
ρM(F) elements—and extending it to a basis—which hasρM(E) elements. So

#(H)−#(F) = ρM(E)− ρM(F).

Set theory tells us that

#(H) + #(H) = #(E) = #(F) + #(F).

Combining these we get the claimed formula forρM∗(F) (check!).

Dualism gives a connection between bases of a matroidM and circuits of its dual matroid
M∗ (i.e. cocircuits ofM):

Theorem 7.5.(i) Circuits of the dual matroid of a matroidM are the minimal sets that intersect
every basis ofM .

(ii) Bases of a matroidM are the minimal sets that intersect every circuit of the dualmatroid
M∗.

Proof. (i) The circuits ofM∗ are the minimal sets that are not contained in any complementof
a basis ofM . Thus they must intersect every basis ofM .

(ii) Bases ofM∗ are the maximal sets that do not contain any circuit ofM∗. The same in
other words: Bases ofM are the minimal sets that intersect every circuit ofM∗.

Example. Bases of the circuit matroidM(G) of a connected graphG are the spanning trees.
Bases of the dual matroidM∗(G) are the complements of these, i.e. the cospanning trees. By the
theorem, circuits of the dual matroid are the cut sets ofG. (Cf. Theorems 2.4 and 2.5.) Because
according to Whitney’s TheoremM∗(G) is a matroid, it has the greediness property, that is, the

CHAPTER 7. MATROIDS 104

greedy algorithm finds a heaviest/lightest basis. Working of Kruskal’s Algorithm No. 3 is based
on this. The algorithm finds the heaviest cospanning tree.

Analogous concepts can naturally be defined for a general, possibly disconnected, graphG.
Bases ofM∗(G) are then the cospanning forests ofG. The dual matroidM∗(G) is called the
bond matroidor the cut matroidor the cocircuit matroidof G. So, when is the bond matroid
M∗(G) graphic, i.e. the circuit matroid of a graph? The so-calledWhitney Planarity Theorem
tells us that this happens exactly whenG is a planar graph! (See e.g.WEST.)

If Mi is a hereditary system of the setEi for i = 1, . . . , k then thedirect sumM = M1 ⊕
· · ·⊕Mk of the systemsM1, . . . ,Mk is the hereditary system of the setE = E1∪· · ·∪Ek whose
independent sets are exactly all setsI1 ∪ · · · ∪ Ik whereIi ∈ IMi

(i = 1, . . . , k). In particular,
if E1 = · · · = Ek = E then the direct sumM is called theunionof the systemsM1, . . . ,Mk,
denoted byM = M1 ∪ · · · ∪Mk. Note that each hereditary systemMi could also be thought of
as a hereditary system of the setE simply by adding elements ofE −Ei as circuits (loops, that
is).

It is not exactly difficult to see that ifM1, . . . ,Mk are matroids and the setsE1, . . . , Ek are
pairwise disjoint thenM = M1⊕· · ·⊕Mk is a matroid, say, by demonstrating the augmentation
property (try it!). But actually a more general result holdstrue:

Theorem 7.6. (Matroid Union Theorem6) If M1 . . . ,Mk are matroids of the setE then the
unionM = M1 ∪ · · · ∪Mk is also a matroid ofE and

ρM : ρM (F) = min
F ′

⊆F

(

#(F − F ′) +

k
∑

i=1

ρMi
(F ′)

)

.

Proof. The proof is rather long and difficult, and is not given here (see e.g. WEST or OXLEY.)
It might be mentioned, though, that the rank formula is not valid for hereditary systems in
general.

The theorem has many fundamental corollaries, e.g.

Corollary. (Matroid Covering Theorem 7) If M is a loopless matroid of the setE then the
smallest number of independent sets whose union equalsE is

max
F⊆E

⌈

#(F)

ρM(F)

⌉

.

Proof. Note first that sinceM is loopless, each element ofE is in itself an independent set. The
setE thus can be covered as stated. Take nowk copies ofM as the matroidsM1, . . . , Mk in the
union theorem. ThenE is a union ofk independent sets ofM exactly when it is an independent
set of the union matroidM ′ = M1 ∪ · · · ∪Mk. The covering property we are interested in can
then be expressed in the formρM ′(E) = #(E) or, by the union theorem,

#(E) = min
F⊆E

(

#(E − F) +
k

∑

i=1

ρMi
(F)

)

i.e.
min
F⊆E

(kρM(F)−#(F)) = 0.

Since the difference to be minimized is= 0 whenF is the empty set,k will be the smallest
number such thatk ≥ #(F)/ρM(F) for all nonempty subsetsF ⊆ E.

6Also known by the namesEdmonds–Fulkerson TheoremandMatroid Sum Theorem.
7Also known asEdmonds’ Covering Theorem.

CHAPTER 7. MATROIDS 105

Example. For the circuit matroidM(G) of a loopless graphG independent sets are the sub-
forests ofG, and we are interested in the minimum number of subforests needed to contain all
edges ofG. Let us denote this number byA(G), it is called thearboricityofG.

To analyze the maximization in the covering theorem we divide the subgraph〈F 〉 induced
by the edges inF into its components. Numbers of vertices and edges of these components are
denoted byn1, . . . , nkF andm1, . . . , mkF , respectively. We use an indexing such that

mkF

nkF − 1
≥

mkF−1

nkF−1 − 1
≥ · · · ≥

m1

n1 − 1
.

Now, in general if
x2

y2
≥

x1

y1
then

x2

y2
≥

x1 + x2

y1 + y2
. Thus

m2

n2 − 1
≥

m1 +m2

n1 + n2 − 2
,

and continuing inductively, also

mi

ni − 1
≥

m1 + · · ·+mi

n1 + · · ·+ ni − i
(i = 1, . . . , kF).

In particular then
mkF

nkF − 1
≥

m1 + · · ·+mkF

n1 + · · ·+ nkF − kF
=

#(F)

ρM(G)(F)
.

Maximization can thus be restricted to edge-setsF such that〈F 〉 is connected andρM(G)(F) =
nF − 1 wherenF is the number of vertices ofF . (It might be further restricted to edge-setsF
such that〈F 〉 also equals the subgraph induced by its vertices, since connecting two vertices by
an edge increases the numerator of the fraction to be maximized, the denominator remaining
the same.) Thus we get the celebratedNash-Williams Formulafor arboricity:

A(G) = max
F⊆E

⌈

#(F)

nF − 1

⌉

.

It might be noted that since for a simple planar graph#(F) ≤ 3nF − 6 (Linear Bound
applied to〈F 〉), A(G) is then at most3.

The restriction of a hereditary systemM of the setE into the setF ⊆ E is a hereditary
systemM |F whose independent sets are exactly those subsets ofF that are independent sets
of M . Thecontractionof M into the setF is the hereditary system(M∗|F)∗, often denoted by
M.F . Clearly the augmentation property ofM is directly transferred toM |F , so (cf. Whitney’s
Theorem)

Theorem 7.7.If M is a matroid of the setE andF ⊆ E thenM |F andM.F are both matroids,
too.

Theminorsof a matroidM are all those matroids that can be obtained fromM by consecutive
restrictions and contractions.

References

1. ANDRÁSFAI, B.: Introductory Graph Theory.The Institute of Physics (1978)

2. ANDRÁSFAI, B.: Graph Theory: Flows, Matrices.The Institute of Physics (1991)

3. BANG-JENSEN, J. & GUTIN , G.:Digraphs: Theory, Algorithms and Applications.Sprin-
ger–Verlag (2002)

4. BOLLOBÁS, B.: Modern Graph Theory.Springer–Verlag (2002)

5. CHRISTOFIDES, N.: Graph Theory. An Algorithmic Approach.Academic Press (1975)

6. DIESTEL, R.: Graph Theory.Springer–Verlag (2005)

7. DOLAN , A. & A LDOUS, J.:Networks and Algorithms. An Introductory Approach.Wiley
(1999)

8. GIBBONS, A.: Algorithmic Graph Theory.Cambridge University Press (1987)

9. GIBBONS, A. & RYTTER, W.: Efficient Parallel Algorithms.Cambridge University Press
(1990)

10. GONDRAN, M. & M INOUX , M.: Graphs and Algorithms.Wiley (1986)

11. GRIMALDI , R.P.:Discrete and Combinatorial Mathematics.Addison–Wesley (2003)

12. GROSS, J. & YELLEN, J.:Graph Theory and Its Applications.CRC Press (2006)

13. GROSS, J. & YELLEN, J.:Handbook of Graph Theory.CRC Press (2003)

14. HOPCROFT, J.E. & ULLMAN , J.D.: Introduction to Automata Theory, Languages, and
Computation.Addison–Wesley (1979)

15. JUNGNICKEL, D.: Graphs, Networks and Algorithms.Springer–Verlag (2004)

16. MCELIECE, R.J. & ASH, R.B. & ASH, C.: Introduction to Discrete Mathematics.
McGraw–Hill (1990)

17. MCHUGH, J.A.: Algorithmic Graph Theory.Prentice–Hall (1990)

18. MEHLHORN, K.: Graph Algorithms and NP-Completeness.Springer–Verlag (1984)

19. NOVAK , L. & G IBBONS, A.: Hybrid Graph Theory and Network Analysis.Cambridge
University Press (1999)

20. OXLEY, J.G.:Matroid Theory.Oxford University Press (2006)

106

107

21. READ, R.C. & WILSON, R.J.:An Atlas of Graphs.Oxford University Press (2004)

22. SKIENA , S.S.:The Algorithm Design Manual.Springer–Verlag (1998)

23. SWAMY, M.N.S. & THULASIRAMAN , K.: Graphs, Networks, and Algorithms.Wiley
(1981)

24. SWAMY, M.N.S. & THULASIRAMAN , K.: Graphs: Theory and Algorithms.Wiley (1992)

25. VÁGÓ, I.: Graph Theory. Application to the Calculation of ElectricalNetworks.Elsevier
(1985)

26. WALTHER, H.: Ten Applications of Graph Theory.Kluwer (1985)

27. WEST, D.B.: Introduction to Graph Theory.Prentice–Hall (1996)

108

Index

across-quantity 43
across-source 43
across-vector 43
acyclic directed graph 32
adjacency matrix 34
adjacent edges 2
adjacent vertices 2
admittance matrix 46
all-vertec incidence matrix 34
alternating path 76
annealing algorithm 72,91
approximation algorithm 50
arboricity 105
arc 27
articulation vertex 14
aspect 92
augmentation 95,100
augmenting path 76,82
augmenting tree 77
back edge 54,56
basis 92
basis exchange property 94,100
BFS tree 59
big-O notation 50
binary matroid 96
bipartite graph 17,76,97
block 15
bond matroid 104
branch 21
Breadth-First Search 59
capacity 80
capacity constraint 80
chord 20
chromatic number 89
circuit 6,23,40,92
circuit matrix 40
circuit matroid 93,105
circuit space 49
clique 5
closed walk 6
cobasis 103
cocircuit 103
cocircuit matroid 104
coloring of a graph 89
complement of graph 10
complete bipartite graph 17
complete graph 3
component 7,28,43
computational complexity 50
condensed graph 28

connected digraph 28
connected graph 7
contracting of edge 13
contraction of matroid 105
cospanning tree 20
cross edge 56
cut 16
cut matrix 36
cut matroid 104
cut set 16,24,36
cut space 49
cut vertex 14
Davidson–Harel Algorithm 90
decision problem 50
degree of vertex 2
Demoucron’s Algorithm 87
Demoucron–Malgrange–Pertuiset Algorithm 87
dependent set 92
Depth-First Search 53
deterministic algorithm 50
DFS forest 57
DFS tree 54
difference of graphs 11
digraph 27
Dijkstra’s Algorithm 61
direct sum 104
directed edge 27
directed graph 27
directed spanning tree 31
directed tree 29
directed walk 27
dual hereditary system 103
dual matroid 102
edge 1
Edmonds Covering Theorem 104
Edmonds–Fulkerson Theorem 104
Edmonds–Karp Modification 84
elimination property 95,100
empty graph 2
end vertex 2
Euler’s Polyhedron Formula 86
Five-Color Theorem 89
flow 80
Floyd’s Algorithm 63
Ford–Fulkerson Algorithm 83
forest 20
forward edge 56
Four-Color Theorem 89
free matroid 97
fundamental circuit 23

109

fundamental circuit matrix 41
fundamental cut set 24
fundamental cut set matrix 39
fundamental equations 44
fundamental set of circuits 23
fundamental set of cut sets 24
graph 1
graphic matroid 93
greediness property 99,100
greedy algorithm 98
Hall’s Theorem 79
Hamiltonian circuit 61,98
Heawood’s Algorithm 90
Heawood’s Theorem 89
hereditary family 92
hereditary set 92
Hopcroft–Tarjan Algorithm 87
Hungarian Algorithm 77
Hungarian tree 77
impedance matrix 46
in-degree 27
incidence matrix 35
independent set 92
induced subgraph 5
intersection of graphs 11
intractable problem 51
isolated vertex 2
isomorphic graphs 18
Jarnik’s Algorithm 70
Karp–Held Heuristics 73
Kirchhoff’s Across-Quantity Law 43
Kirchhoff’s Flow Law 80
Kirchhoff’s Through-Quantity Law 43
Kruskal’s Algorithm 67,98,104
Kuratowski’s Theorem 87
labeled graph 18
labeling 18
Las Vegas algorithm 51
leaf 29
lightest Hamiltonian circuit 71
lightest path 61,63
lightest spanning tree 66
Linear Bound 86,105
linear matroid 96
link 21
loop 2,92
Marimont’s Algorithm 33
Marriage Theorem 79
matching 76,97
matrix matroid 96
matroid 100
Matroid Covering Theorem 104

Matroid Greediness Theorem 99
Matroid Sum Theorem 104
Matroid Union Theorem 104
Max-Flow Min-Cut Theorem 83
maximal matching 76
maximum degree 3
maximum matching 76,84
minimum degree 3
Minimum Degree Bound 87
minor 105
Monte Carlo algorithm 51
multiplicity 1,12
multiset 1
Nas–Williams Formula 105
NP 51
NP-complete 51,71
NP-hard 51,91
nondeterministic algorithm 50
null graph 2
nullity of graph 8
open walk 6 out-degree 27
P 51
parallel edges 2
parallel elements 92
partition matroid 97
path 6
pendant edge 2
pendant vertex 2
perfect matching 79
planae embedding 85
planar graph 85,104,105
polynmial time 51
polynomial space 51
potential vector 43
Prim’s Algorithm 70
probabilistic algorithm 51
proper difference 12
property of induced circuits 96,100
quasi-strongly connected digraph 29
rank function 93
rank of graph 8
rank of matroid 93
reachability matrix 52
reference vertex 35
region 85
removal of edge 13
removal of vertex 12
representation 96
restriction of matroid 105
ring sum of graphs 11,23
root 29
separable graph 14

110

short-circuiting of vertices 13
shortest path 61
simple graph 2
spanning tree 20
stationary linear network 43
stochastic algorithm 51
strong absorptivity 95,100
strongly connected 28
strongly connected component 28
subforest 20
subgraph 3
submodularity 100
subtree 20
symmetric difference 11
Tellegen’s Theorem 48
through-quantity 43
through-source 43
through-vector 43
topological sorting 32
tractable problem 51
trail 6
transport network 80
transversal matroid 97
Travelling Salesman’s Problem 71
tree 20,29
tree edge 54,56,59
trivial graph 2
underlying graph 27
uniform matroid 97
uniformity 94,100
union of graphs 11
union of matroids 104
vectorial matroid 96
vertex 1
walk 6
Warshall’s Algorithm 52
weak absorptivity 94,100
weights 18
Whitney’s Planarity Theorem 104
Whitney’s Theorem 103

	GTkansi
	GTE
	GT1
	GT2
	GT3
	GT4
	GTL

